欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • BA2902SF-E2(2902S)
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多

产品型号BA2902SFV的Datasheet PDF文件预览

ROHM’s Selection Operational Amplifier / Comparator Series  
Operational Amplifiers:  
Ground Sense  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,  
BA2904HFVM-C,BA2902S F/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
No.09049EAT03  
General-purpose  
BA10358 F/FV  
Description  
General-purpose BA10358/BA10324A family and  
Dual  
BA10324A F/FV  
Quad  
high-reliability BA2904S/BA2904/BA2902S/BA2902  
family and automotive BA2904HFVM-C integrate two  
or four independent Op-Amps andphase compensation  
capacitors on a single chip andhave some features of  
high-gain, low power consumption,and operating  
voltage range of 3[V] to 32[V] (single powersupply ).  
BA3404 family is realized high speed operation  
andreduce the crossover distortions that compare with  
BA10358/ BA2904 family.  
BA2904S F/FV/FVM  
Operation guaranteed up to +105℃  
Dual  
High-reliabillity  
BA2904 F/FV/FVM  
Operation guaranteed up to +125℃  
BA2902S F/FV/KN  
Operation guaranteed up to +105℃  
Quad  
BA2902 F/FV/KN  
Operation guaranteed up to +125℃  
Dual  
Dual  
BA3404 F/FVM  
Automotive  
BA2904H FVM-C  
Characteristics  
1) Operable with a single power supply  
2) Wide operating supply voltage  
+3.0[V]+32.0[V](single supply) (BA10358/BA10324A/BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C)  
+4.0[V]+36.0[V](single supply) (BA3404 family)  
3) Standard Op-Amp Pin-assignments  
4) Input and output are operable GND sense  
5) Internal phase compensation type  
6) Low supply current  
7) High open loop voltage gain  
8) Internal ESD protection  
Human body model(HBM) ±5000[V](Typ.) (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C)  
9) Gold PAD (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C)  
10) Wide temperature range  
-40[]+125[] (BA2904/BA2902 family,BA2904HFVM-C)  
-40[]+105[] (BA2904S/BA2902S family)  
-40[]+85[] (BA10358/BA10324/BA3404 family)  
Pin Assignment  
-IN1  
16  
OUT4  
14  
OUT1  
15  
-IN4  
13  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
OUT4  
1
2
3
4
8
7
6
5
OUT1  
VCC  
OUT2  
-IN2  
CH1  
+
CH4  
+ -  
-IN4  
12  
11  
10  
9
1
2
3
4
-
+IN1  
VCC  
NC  
+IN4  
VEE  
NC  
-
-
CH1  
CH4  
CH1  
- +  
+IN1  
VCC  
+IN2  
-IN2  
+IN4  
+
+
-IN1  
+IN1  
VEE  
VEE  
+IN3  
-IN3  
CH2  
CH3  
CH2  
+ -  
+IN2  
+IN3  
-
+
+
-
CH3  
5
6
7
8
+IN2  
CH2  
-IN2  
OUT3  
-IN3  
OUT2  
8
OUT2  
OUT3  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
VQFN16  
BA2902SKN  
BA2904SFVM  
BA10358F  
BA10358FV  
BA10324AF  
BA10324AFV  
BA2902KN  
BA2904FVM  
BA2904SF  
BA2904SFV  
BA2902SF  
BA2902SFV  
BA3404FVM  
BA2904HFVM-C  
BA2904F  
BA2904FV  
BA2902F  
BA2902FV  
BA3404F  
www.rohm.com  
2009.05 - Rev.A  
1/24  
© 2009 ROHM Co., Ltd. All rights reserved.  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Absolute Maximum Ratings (Ta=25[])  
BA10358 family,BA10324A family  
Rating  
Parameter  
Symbol  
Unit  
BA10358 family  
BA10324A family  
Supply Voltage  
Differential Input Voltage (*1)  
VCC-VEE  
Vid  
+32  
V
V
VCC-VEE  
VEEVCC  
-40+85  
-55+125  
+125  
Input Common-mode Voltage Range  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Vicm  
V
Topr  
Tstg  
Tjmax  
Note bsolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause  
deterioration of characteristics.  
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
Electric Characteristics  
BA10358 family,BA10324A family(Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[])  
Guaranteed limit  
Temperature  
Parameter  
Symbol  
BA10358 family  
BA10324A family  
Unit  
Condition  
Range  
Min.  
Typ.  
2
Max.  
Min.  
Typ.  
2
Max.  
Input Offset Voltage  
Vio  
Iio  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
-
-
7
50  
250  
1.2  
-
-
7
50  
250  
2
mV RS=50[]  
Input Offset Current  
5
-
5
nA  
nA  
-
-
Input Bias Current (*2)  
Supply Current  
Ib  
-
45  
0.7  
-
-
20  
0.6  
-
ICC  
VOH  
VOL  
AV  
-
-
mA RL=, All Op-Amps  
RL=2[k]  
High LevelOutput Voltage  
Low Level Output Voltage  
Large Signal Voltage Gain  
-
VCC-1.5  
-
V
-
-
-
-
-
250  
-
mV RL=2[k]  
25  
100  
-
25  
100  
V/mV RL2[k],VCC=15[V]  
Input Common-mode  
Voltage Range  
Vicm  
25℃  
25℃  
25℃  
0
-
VCC-1.5  
0
-
VCC-1.5  
V
-
-
Common-mode Rejection Ratio CMRR  
65  
65  
80  
-
-
65  
65  
75  
-
-
dB  
Power Supply  
PSRR  
100  
100  
dB RS=50[]  
Rejection Ratio  
Output SourceCurrent  
Output SinkCurrent  
Output Voltage Range  
Channel Separation  
IOH  
IOL  
Vo  
25℃  
25℃  
25℃  
25℃  
10  
10  
0
20  
20  
-
-
20  
10  
-
35  
20  
-
-
-
-
-
mA VIN+=1[V],VIN-=0[V],VOUT=0[V]  
mA VIN+=0[V],VIN-=1[V],VOUT=VCC  
-
VCC-1.5  
V
RL=2[k]  
CS  
-
120  
-
-
120  
dB f=1[kHz], input referred  
(*2) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
2/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Absolute Maximum Ratings (Ta=25[])  
BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C  
Rating  
Parameter  
Symbol  
Unit  
BA2904S family  
BA2902S family  
BA2904 family  
BA2902 family  
BA2904HFVM-C  
+36  
Supply Voltage  
VCC-VEE  
Vid  
+32  
32  
V
V
Differential Input Voltage (*3)  
Input Common-mode Voltage Range  
Operating Temperature Range  
Storage Temperature Range  
36  
Vicm  
(VEE-0.3)(VEE+32)  
-40+105  
(VEE-0.3)(VEE+36)  
V
Topr  
-40+125  
Tstg  
-55+150  
+150  
Maximum Junction Temperature  
Tjmax  
Note Absolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(*3) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.  
Electric Characteristics  
BA2904S/BA2904 family (Unless otherwise specified VCC=+5[V], VEE=0[V])  
Guaranteed limit  
Temperature  
Range  
Parameter  
Symbol  
BA2904S/BA2904 family  
Unit  
mV  
Condition  
Min.  
Typ.  
Max.  
7
25℃  
-
2
-
VOUT=1.4[V]  
VCC=530[V],VOUT=1.4[V]  
Input Offset Voltage (*4)  
Input Offset Voltage Drift  
Input Offset Current (*4)  
Input Offset Current Drift  
Input Bias Current (*4)  
Vio  
Vio/T  
Iio  
Full range  
-
10  
-
-
±7  
2
μV/VOUT=1.4[V]  
25℃  
-
50  
200  
-
nA  
VOUT=1.4[V]  
Full range  
-
-
lio/T  
Ib  
-
-
±10  
20  
-
pA/VOUT=1.4[V]  
25℃  
Full range  
25℃  
250  
250  
1.2  
2
nA  
VOUT=1.4[V]  
-
-
0.7  
-
Supply Current  
Vicm  
VOH  
mA RL=All Op-Amps  
Full range  
25℃  
-
3.5  
-
-
-
RL=2[k]  
High Level Output Voltage  
-
-
V
Full range  
27  
28  
-
VCC=30[V],RL=10[k]  
Low Level  
Output Voltage  
VOL  
AV  
Full range  
-
5
20  
-
mV RL=All Op-Amps  
RL2[k],VCC=15[V]  
V/mV  
Large Signal Voltage Gain  
25℃  
25  
100  
VOUT=1.411.4[V]  
25℃  
Full range  
25℃  
0
-
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
Vicm  
V
(VCC-VEE)=5V,VOUT=VEE+1.4[V]  
-
-
-
-
-
-
-
Common-mode Rejection Ratio CMRR  
Power Supply Rejection Ratio PSRR  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
dB  
dB  
VOUT=1.4[V]  
VCC=5~30[V]  
25℃  
25℃  
VIN+=1[V],VIN-=0[V]  
VOUT=0[V] 1CH is short circuit  
Output SourceCurrent (*5)  
IOH  
IOL  
mA  
mA  
Full range  
25℃  
20  
-
VIN+=0[V],VIN-=1[V]  
VOUT=5[V] 1CH is short circuit  
Full range  
Output Sink Current (*5)  
VIN+=0[V],VIN-=1[V]  
VOUT=200[mV]  
Isink  
CS  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
-
-
-
μA  
dB  
Channel Separation  
Slew rate  
f=1[kHz], input referred  
VCC=15[V],AV=0[V],  
RL=2[k],CL=100[pF]  
VCC=30[V],RL=2[k],  
CL=100[pF]  
SR  
-
V/μs  
Maximum frequency  
ft  
25℃  
25℃  
-
-
0.5  
40  
-
-
MHz  
VCC=15[V],VEE=-15[V],  
RS=100[],Vi=0[V],f=1[kHz]  
Input referred noise voltage  
Vn  
nV/(Hz)1/2  
(*4) Absolute value  
(*5) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
(*6) BA2904S familyFull range -40105BA2904 familyFull range -40+125℃  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
3/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA2902S/BA2902 family (Unless otherwise specified VCC=+5[V], VEE=0[V])  
Guaranteed limit  
Temperature  
Parameter  
Symbol  
BA2902S/BA2902 family  
Unit  
mV  
Condition  
Range  
Min.  
Typ.  
Max.  
25℃  
-
2
-
7
10  
-
VOUT=1.4[V]  
VCC=530[V],VOUT=1.4[V]  
Input Offset Voltage (*4)  
Input Offset Voltage Drift  
Input Offset Current (*4)  
Input Offset Current Drift  
Input Bias Current (*4)  
Vio  
Vio/T  
Iio  
Full range  
-
-
±7  
2
μV/VOUT=1.4[V]  
nA VOUT=1.4[V]  
pA/VOUT=1.4[V]  
nA VOUT=1.4[V]  
25℃  
-
50  
200  
-
Full range  
-
-
lio/T  
Ib  
-
-
±10  
20  
-
25℃  
Full range  
25℃  
250  
250  
2
-
-
0.7  
-
Supply Current  
Vicm  
VOH  
mA RL=All Op-Amps  
Full range  
25℃  
-
3
3.5  
-
-
-
RL=2[k]  
High Level Output Voltage  
-
-
V
Full range  
27  
28  
-
VCC=30[V],RL=10[k]  
mV RL=All Op-Amps  
Low Level  
Output Voltage  
VOL  
AV  
Full range  
-
5
20  
-
RL2[k],VCC=15[V]  
V/mV  
Large Signal Voltage Gain  
25℃  
25  
100  
VOUT=1.411.4[V]  
25℃  
Full range  
25℃  
0
-
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
Vicm  
V
(VCC-VEE)=5V,VOUT=VEE+1.4[V]  
-
-
-
-
-
-
-
Common-mode Rejection Ratio CMRR  
Power Supply Rejection Ratio PSRR  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
dB  
dB  
VOUT=1.4[V]  
VCC=5~30[V]  
25℃  
25℃  
VIN+=1[V],VIN-=0[V]  
VOUT=0[V] 1CH is short circuit  
Output SourceCurrent (*5)  
IOH  
IOL  
mA  
mA  
Full range  
25℃  
20  
-
VIN+=0[V],VIN-=1[V]  
VOUT=5[V] 1CH is short circuit  
Output Sink Current (*5)  
Full range  
VIN+=0[V],VIN-=1[V]  
VOUT=200[mV]  
Isink  
CS  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
-
-
-
μA  
dB  
Channel Separation  
Slew rate  
f=1[kHz], input referred  
VCC=15[V],AV=0[V],  
RL=2[k],CL=100[pF]  
VCC=30[V],RL=2[k],  
CL=100[pF]  
VCC=15[V],VEE=-15[V],  
RS=100[],Vi=0[V],f=1[kHz]  
SR  
-
V/μs  
Maximum frequency  
ft  
25℃  
25℃  
-
-
0.5  
40  
-
-
MHz  
Input referred noise voltage  
Vn  
nV/(Hz)1/2  
(*4) Absolute value  
(*5) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
(*6) BA2902S familyFull range -40105,BA2902 familyFull range -40+125℃  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
4/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA2904HFVM-C(Unless otherwise specified VCC=+5[V], VEE=0[V])  
Guaranteed limit  
Temperature  
Parameter  
Symbol  
BA2904HFVM-C  
Unit  
mV  
Condition  
Range  
Min.  
Typ.  
Max.  
25℃  
-
2
-
7
7
VOUT=1.4[V]  
VCC=530[V],VOUT=1.4[V]  
Input Offset Voltage (*4)  
Input Offset Voltage Drift  
Input Offset Current (*4)  
Input Offset Current Drift  
Input Bias Current (*4)  
Vio  
Vio/T  
Iio  
Full range  
-
-
-
-
μV/VOUT=1.4[V]  
nA VOUT=1.4[V]  
pA/VOUT=1.4[V]  
nA VOUT=1.4[V]  
25℃  
-
2
-
50  
100  
-
Full range  
-
-
lio/T  
Ib  
-
25℃  
Full range  
25℃  
-
20  
-
60  
100  
1.2  
1.2  
-
-
-
0.7  
-
Supply Current  
Vicm  
VOH  
mA RL=All Op-Amps  
Full range  
25℃  
-
3.5  
3.2  
27  
-
RL=2[k]  
High Level Output Voltage  
-
-
V
Full range  
28  
-
VCC=30[V],RL=10[k]  
mV RL=All Op-Amps  
Low Level  
Output Voltage  
VOL  
AV  
Full range  
-
-
5
-
20  
-
RL2[k],VCC=15[V]  
V/mV  
Large Signal Voltage Gain  
25℃  
VOUT=1.411.4[V]  
25℃  
Full range  
25℃  
0
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
Vicm  
V
(VCC-VEE)=5V,VOUT=VEE+1.4[V]  
0
VCC-2.0  
Common-mode Rejection Ratio CMRR  
Power Supply Rejection Ratio PSRR  
65  
65  
20  
10  
10  
2
80  
100  
30  
-
-
-
-
-
-
-
dB  
dB  
VOUT=1.4[V]  
VCC=5~30[V]  
25℃  
25℃  
VIN+=1[V],VIN-=0[V]  
VOUT=0[V] 1CH is short circuit  
Output SourceCurrent (*5)  
IOH  
IOL  
mA  
mA  
Full range  
25℃  
20  
-
VIN+=0[V],VIN-=1[V]  
VOUT=5[V] 1CH is short circuit  
Output Sink Current (*5)  
Full range  
VIN+=0[V],VIN-=1[V]  
VOUT=200[mV]  
Isink  
CS  
25℃  
25℃  
25℃  
12  
-
40  
-
-
-
-
μA  
dB  
Channel Separation  
Slew rate  
f=1[kHz], input referred  
VCC=15[V],AV=0[V],  
RL=2[k],CL=100[pF]  
VCC=30[V],RL=2[k],  
CL=100[pF]  
VCC=15[V],VEE=-15[V],  
RS=100[],Vi=0[V],f=1[kHz]  
SR  
-
-
V/μs  
Maximum frequency  
ft  
25℃  
25℃  
-
-
-
-
-
-
MHz  
Input referred noise voltage  
Vn  
nV/(Hz)1/2  
(*4) Absolute value  
(*5) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
(*6) BA2904HFVM-CFull range -40+125℃  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
5/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Absolute Maximum Ratings (Ta=25[])  
BA3404 family  
Parameter  
Symbol  
VCC-VEE  
Vid  
Rating  
Unit  
V
Supply Voltage  
Differential Input Voltage (*7)  
+36  
36  
V
Input Common-mode Voltage Range  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Vicm  
(VEE-0.3)(VEE+36)  
-40+85  
V
Topr  
Tstg  
-55+150  
+150  
Tjmax  
Note Absolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause  
deterioration of characteristics.  
(*7) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
Electric Characteristics  
BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[])  
Guaranteed limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
Input Offset Voltage(*8)  
Input Offset Current (*8)  
Input Bias Current (*8)  
Vio  
Iio  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
-
-
2
5
mV VOUT=0[V], Vicm=0[V]  
5
70  
100  
±14  
-
50  
nA VOUT=0[V], Vicm=0[V]  
Ib  
-
200  
nA VOUT=0[V], Vicm=0[V]  
Large Signal Voltage Gain  
Maximum Output Voltage  
AV  
88  
±13  
-15  
70  
80  
-
-
dB RL2[k],VOUT=±10[V],Vicm=0[V]  
VOM  
Vicm  
-
V
V
RL2[k]  
Input Common-mode  
Voltage Range  
13  
VOUT=0[V]  
Common-mode Rejection Ratio CMRR  
Power Supply Rejection Ratio PSRR  
90  
94  
-
dB VOUT=0[V], Vicm=-15[V]+13[V]  
dB Ri10[k], VCC=+4[V]+30[V]  
mA RL=All Op-Amps, VIN+=0[V]  
-
Supply Current  
ICC  
Isource  
Isink  
SR  
2.0  
30  
3.5  
VIN+=1[V], VIN-=0[V],VOUT=+12[V],  
Output of one channel only  
Output Source Current  
Output Sink Current  
Slew rate  
20  
10  
-
-
-
-
-
-
mA  
VIN+=0[V], VIN-=1[V],VOUT=-12[V],  
Output of one channel only  
20  
mA  
1.2  
1.2  
0.1  
V/μs AV=0[dB], RL=2[k],CL=100[pF]  
MHz RL=2[k]  
Unity Gain Frequency  
ft  
-
VOUT=10[Vp-p],  
f=20[kHz],AV=0[dB],RL=2[k]  
Total Harmonic Distortion  
THD  
-
%
(*8) Absolute value  
www.rohm.com  
2009.05 - Rev.A  
6/24  
© 2009 ROHM Co., Ltd. All rights reserved.  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Example of electrical characteristics  
BA10358 family  
BA10358 family  
BA10358 family  
BA10358 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
1
0.8  
0.6  
0.4  
0.2  
0
32V  
BA10358F  
25  
5V  
40℃  
BA10358FV  
85℃  
3V  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
AMBIENT TEMPERTURE [  
] .  
Fig. 1  
Fig. 2  
Fig. 3  
Derating Curve  
Supply Current - Supply Voltage  
Supply Current - Ambient Temperature  
BA10358 family  
BA10358 family  
BA10358 family  
35  
30  
25  
20  
15  
10  
5
40  
5
-40℃  
4
3
2
1
0
30  
85℃  
20  
25℃  
25℃  
10  
-40℃  
85℃  
0
0
0
5
10  
15  
20  
25  
30  
35  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
]
100  
OUTPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
Fig. 4  
Fig. 5  
Fig. 6  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage– Ambient Temperature  
Output Source Current - Output Voltage  
(VCC=5[V])  
(VCC=5[V],RL=2[k])  
RL=10[k])  
BA10358 family  
BA10358 family  
BA10358 family  
100  
40  
40  
10  
30  
30  
20  
10  
0
15V  
85℃  
15V  
1
5V  
20  
0.1  
5V  
25℃  
3V  
3V  
10  
0.01  
-40℃  
0
0.001  
-50  
-25  
0
25  
50  
75  
100  
0
0.4  
0.8  
1.2  
1.6  
2
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERAURE [  
]
Fig. 7  
Fig. 8  
Fig. 9  
Output Source Current - Ambient Temperature  
(VOUT=0[V])  
Output Sink Current - Output Voltage  
Output Sink Current - Ambient Temperature  
(VOUT=VCC)  
(VCC=5[V])  
BA10358 family  
BA10358 family  
BA10358 family  
60  
60  
8
6
4
50  
50  
40  
30  
20  
10  
0
32V  
40  
2
25℃  
-40℃  
30  
0
5V  
-40℃  
-2  
20  
-4  
85℃  
3V  
25℃  
85℃  
10  
-6  
-8  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
Fig. 10  
Fig. 11  
Fig. 12  
Input Offset Voltage - Supply Voltage  
Low Level Sink Current – Supply Voltage  
(VOUT=0.2[V])  
Low Level Sink Current – Ambient Temperature  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
7/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA10358 family  
BA10358 family  
BA10358 family  
BA10358 family  
8
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
6
4
2
0
85℃  
32V  
25℃  
3V  
5V  
-2  
-4  
-6  
-40℃  
5V  
32V  
3V  
-8  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
]
AMBIENT TEMPERATURE [  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 13  
Fig. 14  
Fig. 15  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
BA10358 family  
BA10358 family  
BA10358 family  
50  
8
10  
6
4
40  
30  
20  
10  
0
5
2
-40℃  
25℃  
-40℃  
0
0
25℃  
-2  
-4  
-6  
-8  
-5  
85℃  
85℃  
-10  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 16  
Fig. 17  
Fig. 18  
Input Bias Current – Ambient Temperature  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
Input Offset Voltage  
– Common Mode Input Voltage  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
(VCC=5[V])  
BA10358 family  
BA10358 family  
BA10358 family  
10  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
-40℃  
25℃  
5
5V  
3V  
0
15V  
85℃  
32V  
5V  
80  
-5  
80  
70  
70  
60  
-10  
60  
2
4
6
8
10 12 14 16 18  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE[V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [°C]  
Fig. 19  
Fig. 20  
Fig. 21  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
BA10358 family  
BA10358 family  
BA10358 family  
140  
140  
130  
120  
110  
100  
90  
140  
120  
100  
120  
32V  
100  
25℃  
-40℃  
85℃  
5V  
80  
60  
40  
80  
80  
60  
3V  
70  
60  
40  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig. 22  
Fig. 23  
Fig. 24  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
8/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA10324A family  
BA10324A family  
BA10324A family  
BA10324A family  
2
1.6  
1.2  
0.8  
0.4  
0
1000  
800  
600  
400  
200  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
BA10324AFV  
32V  
25℃  
5V  
BA10324AF  
40℃  
85℃  
3V  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
]
AMBIENT TEMPERTURE [  
.
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig. 25  
Fig. 26  
Fig. 27  
Supply Current - Ambient Temperature  
Derating Curve  
Supply Current - Supply Voltage  
BA10324A family  
BA10324A family  
BA10324A family  
35  
30  
25  
20  
15  
10  
5
5
50  
-40℃  
4
3
2
1
0
40  
85℃  
30  
25℃  
20  
25℃  
85℃  
-40℃  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE[  
]
OUTPUT VOLTAGE [V]  
Fig. 28  
Fig. 29  
Fig. 30  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
Output Source Current - Output Voltage  
(VCC=5[V],RL=2[k])  
(VCC=5[V])  
RL=10[k])  
BA10324A family  
BA10324A family  
BA10324A family  
100  
50  
40  
30  
20  
10  
0
15V  
10  
40  
15V  
30  
1
85℃  
3V  
5V  
20  
0.1  
3V  
5V  
25℃  
10  
0.01  
-40℃  
0
0.001  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
]
AMBIENT TEMPERATURE [  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERAURE [ ]  
Fig. 31  
Fig. 32  
Fig. 33  
Output Source Current - Ambient Temperature  
(VOUT=0[V])  
Output Sink Current - Output Voltage  
(VCC=5[V])  
Output Sink Current - Ambient Temperature  
(VOUT=VCC)  
BA10324A family  
BA10324A family  
BA10324A family  
60  
60  
8
6
50  
50  
25℃  
85℃  
4
32V  
40  
30  
40  
2
0
5V  
30  
85℃  
-40℃  
25℃  
-2  
20  
10  
0
20  
-40℃  
-4  
3V  
10  
-6  
-8  
0
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig. 34  
Fig. 35  
Fig. 36  
Input Offset Voltage - Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Low Level Sink Current – Ambient Temperature  
(VOUT=0.2[V])  
Low Level Sink Current – Supply Voltage  
(VOUT=0.2[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
9/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA10324A family  
BA10324A family  
BA10324A family  
BA10324A family  
8
50  
40  
30  
20  
10  
0
50  
6
40  
4
32V  
2
30  
32V  
85℃  
25℃  
0
5V  
3V  
20  
-2  
5V  
-4  
10  
-6  
-8  
-40℃  
3V  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 37  
Fig. 38  
Fig. 39  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
BA10324A family  
BA10324A family  
BA10324A family  
50  
8
10  
6
-40℃  
40  
30  
20  
10  
0
4
5
85℃  
25℃  
2
85℃  
0
0
-2  
25℃  
-40℃  
-4  
-6  
-8  
-5  
-10  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
COMMON MODE INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Fig. 40  
Fig. 41  
Fig. 42  
Input Offset Voltage – Common Mode  
Input Voltage(VCC=5[V])  
Input Bias Current – Ambient Temperature  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
Input Offset Current – Supply  
Voltage(Vicm=0[V],VOUT=1.4[V])  
BA10324A family  
BA10324A family  
BA10324A family  
10  
140  
140  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
5
15V  
-40℃  
32V  
5V  
0
3V  
25℃  
85℃  
5V  
-5  
80  
80  
70  
70  
-10  
60  
60  
-50  
-25  
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 43  
Fig. 44  
Fig. 45  
Large Signal Voltage Gain – Supply Voltage  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Ambient  
(RL=2[k])  
Temperature(RL=2[k])  
BA10324A family  
140  
BA10324A family  
140  
BA10324A family  
140  
130  
120  
110  
100  
90  
120  
100  
120  
32V  
100  
25℃  
-40℃  
85℃  
5V  
80  
60  
40  
80  
80  
60  
3V  
70  
60  
40  
0
5
10  
15  
20  
25  
30  
35  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig. 46  
Fig. 47  
Fig. 48  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
10/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA2904S/BA2904 family,BA2904H  
32V  
BA2904S/BA2904 family,BA2904HFVM-C  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
BA2904F  
BA2904FV  
BA2904FVM  
25℃  
BA2904HFVM-C  
40℃  
BA2904SF  
5V  
125℃  
105℃  
BA2904SFV  
BA2904SFVM  
3V  
0
25  
50  
75  
100 125 150  
105  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
Fig. 49  
]
Fig. 50  
Fig. 51  
Supply Current - Ambient Temperature  
Derating Curve  
Supply Current - Supply Voltage  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
50  
BA2904S/BA2904 family,BA2904H  
40  
30  
20  
10  
0
5
-40℃  
40  
4
3
2
1
0
-40℃  
25℃  
30  
100℃  
105℃  
25℃  
20  
105℃  
125℃  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 52  
Fig. 53  
Fig. 54  
Maximum Output Voltage  
– Supply VoltageRL=10[k])  
Maximum Output Voltage – Ambient  
Temperature(VCC=5[V],RL=2[k])  
Output Source Current  
- Output Voltage(VCC=5[V])  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
15V  
BA2904S/BA2904 family,BA2904H  
100  
10  
30  
20  
10  
0
50  
105℃  
40  
30  
20  
10  
0
3V  
125℃  
5V  
1
-40℃  
5V  
3V  
15V  
0.1  
25℃  
0.01  
0.001  
-50 -25  
0
25  
50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 55  
Fig. 56  
Fig. 57  
Output Source Current - Ambient Temperature  
(VOUT=0[V])  
Output Sink Current - Output Voltage  
(VCC=5[V])  
Output Sink Current - Ambient Temperature  
(VOUT=VCC)  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
8
BA2904S/BA2904 family,BA2904H  
80  
80  
-40  
32V  
70  
60  
50  
40  
30  
20  
10  
0
6
70  
25  
-40  
4
2
60  
50  
5V  
25  
0
40  
125  
3V  
-2  
30  
105  
125  
105  
20  
10  
0
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 58  
Fig. 59  
Fig. 60  
Input Offset Voltage  
- Supply Voltage(Vicm=0[V], VOUT=1.4[V])  
Low Level Sink Current  
Supply Voltage(VOUT=0.2[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
Low Level Sink Current  
Ambient Temperature(VOUT=0.2[V])  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
11/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA2904S/BA2904 family,BA2904HFVM-C  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
50  
40  
30  
20  
10  
0
8
50  
40  
30  
20  
10  
0
6
4
3V  
25℃  
2
32V  
-40℃  
0
5V  
32V  
-2  
-4  
-6  
-8  
3V  
5V  
105℃  
125℃  
-50 -25  
0
25 50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE [  
]
Fig. 61  
Fig. 62  
Fig. 63  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
BA2904S/BA2904 family,BA2904H  
10  
BA2904S/BA2904 family,BA2904H  
8
BA2904S/BA2904 family,BA2904H  
50  
6
-40℃  
105℃  
40  
30  
20  
10  
0
5
4
25℃  
-40℃  
25℃  
125℃  
2
0
0
-2  
-4  
-6  
-8  
105℃  
125℃  
-5  
-10  
-10  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
COMMON MODE INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 66  
AMBIENT TEMPERATURE []  
Fig. 64  
Fig. 65  
Input Offset Voltage Common Mode  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current Ambient Temperature  
Input Voltage(VCC=5[V])  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
10  
140  
140  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
-40℃  
25℃  
15V  
5
3V  
0
5V  
5V  
32V  
105℃  
125℃  
80  
-5  
80  
70  
70  
60  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25  
50 75 100 125 150  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 67  
Fig. 68  
Fig. 69  
Large Signal Voltage Gain  
– Supply Voltage(RL=2[k])  
Large Signal Voltage Gain  
– Ambient Temperature(RL=2[k])  
Input Offset Current  
– Ambient Temperature(Vicm=0[V],VOUT=1.4[V])  
BA2904S/BA2904 family,BA2904H  
BA2904S/BA2904 family,BA2904H  
140  
BA2904S/BA2904 family,BA2904H  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
36V  
32V  
120  
25℃  
-40℃  
100  
80  
125℃  
5V  
105℃  
3V  
80  
60  
60  
70  
40  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig. 70  
Fig. 71  
Fig. 72  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
- Ambient Temperature  
Common Mode Rejection Ratio  
Supply Voltage  
Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
12/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA2902S/BA2902 family  
32V  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BA2902FV  
800  
600  
400  
200  
BA2902KN  
BA2902F  
25℃  
40℃  
BA2902SFV  
BA2902SKN  
5V  
125℃  
105℃  
3V  
BA2902SF  
0
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERTURE []  
AMBIENT TEMPERATURE []  
Fig. 73  
SUPPFLYigV.O7LT4AGE [V]  
Fig. 75  
Supply Current - Ambient Temperature  
Derating Curve  
Supply Current - Supply Voltage  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
-40℃  
40  
-40℃  
25℃  
30  
100℃  
105℃  
25℃  
20  
105℃  
125℃  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
Fig. 76  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 77  
Fig. 78  
Maximum Output Voltage  
– Supply VoltageRL=10[k])  
Output Source Current  
Maximum Output Voltage – Ambient  
- Output Voltage(VCC=5[V])  
Temperature(VCC=5[V],RL=2[k])  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
100  
30  
20  
10  
0
50  
15V  
105℃  
40  
30  
20  
10  
0
10  
3V  
125℃  
5V  
1
0.1  
-40℃  
5V  
3V  
15V  
25℃  
0.01  
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 81  
Fig. 79  
Fig. 80  
Output Sink Current  
Output Source Current  
Output Sink Current  
- Ambient Temperature (VOUT=VCC)  
- Ambient Temperature(VOUT=0[V])  
- Output Voltage (VCC=5[V])  
BA2902S/BA2902 family  
32V  
BA2902S/BA2902 family  
8
BA2902S/BA2902 family  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-40℃  
6
25℃  
-40℃  
4
25℃  
5V  
2
0
125℃  
3V  
-2  
105℃  
125℃  
105℃  
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 82  
Fig. 83  
Fig. 84  
Low Level Sink Current  
– Supply Voltage(VOUT=0.2[V])  
Low Level Sink Current  
– Ambient Temperature(VOUT=0.2[V])  
Input Offset Voltage  
- Supply Voltage(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
13/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
50  
40  
30  
20  
10  
0
8
6
50  
40  
30  
20  
10  
0
4
3V  
25℃  
2
32V  
-40℃  
0
5V  
32V  
-2  
-4  
-6  
-8  
3V  
5V  
105℃  
125℃  
-50 -25  
0
25 50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Fig. 85  
Fig. 86  
Fig. 87  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
8
BA2902S/BA2902 family  
50  
10  
6
-40℃  
105℃  
40  
30  
20  
10  
0
5
4
25℃  
-40℃  
25℃  
125℃  
2
0
0
-2  
-4  
-6  
-8  
105℃  
125℃  
-5  
-10  
-10  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
COMMON MODE INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 88  
Fig. 89  
Fig. 90  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Offset Voltage – Common Mode  
Input Voltage(VCC=5[V])  
BA2902S/BA2902 family  
Input Bias Current – Ambient Temperature  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
10  
140  
140  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
-40℃  
25℃  
15V  
5
3V  
0
5V  
5V  
32V  
105℃  
125℃  
80  
-5  
80  
70  
70  
60  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 91  
Fig. 92  
Fig. 93  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
– Supply Voltage(RL=2[k])  
– Ambient Temperature(RL=2[k])  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
BA2902S/BA2902 family  
140  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
36V  
32V  
120  
25℃  
-40℃  
100  
125℃  
80  
5V  
105℃  
3V  
80  
60  
60  
40  
70  
40  
60  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig. 94  
Fig. 95  
Fig. 96  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
Common Mode Rejection Ratio  
– Supply Voltage  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
14/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA3404 family  
BA3404 family  
BA3404 family  
BA3404 family  
1000  
800  
600  
400  
200  
0
4
3
2
1
0
4
3
2
1
0
BA3404F  
±18.0V  
25℃  
85℃  
±15.0V  
±2.0V  
BA3404FVM  
-40℃  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
]
100  
0
8
16  
24  
32  
40  
AMBIENT TEMPERATURE [  
AMBIENT TEMPERTURE [  
]
.
SUPPLY VOLTAGE [V]  
Fig. 97  
Fig. 98  
Fig. 99  
Derating Curve  
Supply Current - Supply Voltage  
Supply Current - Ambient Temperature  
BA3404 family  
BA3404 family  
BA3404 family  
15  
15  
10  
5
20  
15  
10  
5
10  
VOH  
VOH  
VOH  
5
0
0
0
-5  
-5  
-5  
-10  
-15  
-20  
VOL  
VOL  
-10  
-15  
-10  
VOL  
-15  
0.1  
10  
1000  
100000  
0.001  
0.01  
0.1  
1
10  
100  
±0  
±4  
±8  
±12  
±16  
±20  
LOAD RESISTANCE [k  
]
Ω
SUPPLY VOLTAGE [V]  
OUTPUT CURRENT [mA]  
Fig. 100  
Fig. 101  
Fig. 102  
Maximum Output Voltage – Supply Voltage  
Output Voltage – Output Current  
(VCC/VEE=+15[V]/-15[V],Ta=25[])  
Maximum Output Voltage – Load Resistance  
(VCC/VEE=+15[V]/-15[V],Ta=25[])  
BA3404 family  
BA3404 family  
BA3404 family  
6
250  
200  
150  
100  
50  
6
4
4
±18.0V  
2
2
85  
±15.0V  
-40  
25  
0
0
±2.0V  
25  
-40  
-2  
-4  
-6  
-2  
85℃  
-4  
-6  
0
±0  
±5  
±10  
±15  
±20  
±0  
±5  
±10  
±15  
±20  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Fig. 103  
Fig. 104  
Fig. 105  
Input Offset Voltage - Supply voltage  
Input Offset Voltage - Ambient Temperature  
Input Bias Current - Supply Voltage  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
BA3404 family  
BA3404 family  
BA3404 family  
250  
40  
40  
30  
30  
20  
200  
150  
100  
50  
20  
-40℃  
25℃  
±18.0V  
10  
0
10  
±2.0V  
0
±2.0V  
85℃  
-10  
-20  
-30  
-40  
±15.0V  
-10  
-20  
-30  
-40  
±15.0V  
±18.0V  
25  
0
-50  
-25  
0
50  
75  
100  
±0  
±5  
±10  
±15  
±20  
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig. 106  
Fig. 107  
Fig. 108  
Input Bias Current – Ambient Temperature  
Input Offset Current – Supply Voltage  
Input Offset Current – Ambient Temperature  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
(Vicm=0[V], VOUT=0[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
15/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
BA3404 family  
BA3404 family  
BA3404 family  
BA3404 family  
20  
15  
10  
5
150  
125  
100  
75  
150  
125  
100  
75  
85℃  
0
-5  
25℃  
50  
50  
-40℃  
-10  
-15  
-20  
25  
25  
0
0
-3  
-2  
-1  
0
1
2
3
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
COMMON MODE INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Fig. 109  
Fig. 110  
Fig. 111  
Input Offset Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(VCC/VEE=+15[V]/-15[V])  
– Common Mode Input Voltage  
(VCC/VEE=+2.5[V]/-2.5[V])  
(VCC/VEE=+15[V]/-15[V])  
BA3404 family  
BA3404 family  
BA3404 family  
160  
140  
120  
100  
80  
150  
125  
100  
75  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
Phase  
±18.0V  
±15.0V  
Gain  
25℃  
-40℃  
±2.0V  
85℃  
50  
60  
40  
60  
25  
20  
40  
0
0
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20  
SUPPLY VOLTAGE [V]  
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07  
FREQUENCY [Hz]  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [°C]  
Fig. 112  
Fig. 113  
Fig. 114  
Large Signal Voltage Gain  
– Supply Voltage  
(RL=2[k])  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
Voltage Gain - Frequency  
(VCC=±15V)  
BA3404 family  
BA3404 family  
BA3404 family  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25℃  
±18.0V  
0.1  
20kHz  
-40℃  
85℃  
±2.5V  
±15.0V  
0.01  
20Hz  
1kHz  
0.001  
-50  
-25  
0
25  
50  
75  
100  
±0  
±4  
±8  
±12  
±16  
±20  
0.01  
0.1  
1
10  
OUTPUT VOLTAGE [Vrms]  
SUPPLY VOLTAGE[V]  
AMBIENT TEMPERATURE [  
]
Fig. 115  
Fig. 116  
Fig. 117  
Total Harmonic Distoration – Output Voltage  
(VCC/VEE=+4[V]/-4[V],Av=0[dB],  
Slew Rate L-H – Supply Voltage  
Slew Rate H-L – Ambient Temperature  
BA3404 family  
80  
60  
40  
20  
0
RL=2[k],80[kHz]-LPF,Ta=25[])  
10  
100  
1000  
10000  
FREQUENCY [Hz]  
Fig. 118  
Equivalent Input Noise Voltage - Frequency  
(VCC/VEE=+15[V]/-15[V],Rs=100[],Ta=25[])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
16/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Circuit Diagram  
VCC  
VCC  
IN  
VOUT  
IN  
IN  
VOUT  
IN  
VEE  
VEE  
BA10358/BA10324A/BA2904S/BA2904/  
BA2902S/BA2902/BA2904H simplified schematic  
BA3404 simplified schematic  
Fig. 119 Circuit Diagram (one channel only)  
Test circuit1 NULL method  
VCC,VEE,EK,Vicm Unit[V]  
BA2904S/BA2904 family  
BA10358/BA10324A family BA2902S/BA2902 family  
BA2904HFVM-C  
BA3404 family  
Parameter  
VF  
S1  
S2  
S3  
Calculation  
Vcc VEE EK Vicm Vcc VEE EK Vicm VCC VEE EK Vicm  
VF1  
ON ON OFF  
5
5
0
0
-1.4  
-1.4  
0
0
530  
0
0
-1.4  
-1.4  
0
0
15  
15  
-15  
-15  
0
0
0
0
1
2
Input Offset Voltage  
Input Offset Current  
VF2 OFF OFF OFF  
5
VF3 OFF ON  
OFF  
Input Bias Current  
5
0
-1.4  
0
5
0
-1.4  
0
15  
-15  
0
0
3
4
VF4  
VF5  
VF6  
VF7  
ON OFF  
15  
15  
5
0
0
0
-1.4  
-11.4  
-1.4  
0
0
0
15  
15  
5
0
0
0
-1.4  
-11.4  
-1.4  
0
0
0
15  
15  
15  
-15  
10  
0
0
Large Signal  
Voltage Gain  
ON ON ON  
-15 -10  
Common-mode  
Rejection Ratio  
(Input common-mode  
Voltage Range)  
-15  
-15  
0
0
-15  
ON ON OFF  
ON ON OFF  
5
6
VF8  
5
0
-1.4 3.5  
5
0
-1.4 3.5  
15  
13  
VF9  
5
0
0
-1.4  
-1.4  
0
0
5
0
0
-1.4  
-1.4  
0
0
2
-2  
0
0
0
0
Power Supply  
Rejection Ratio  
VF10  
30  
30  
15  
-15  
-Calculation-  
1. Input Offset Voltage (Vio)  
| VF1 |  
[V]  
Vio =  
1 + Rf / Rs  
C2  
0.1[μF]  
2. Input Offset Current (Iio)  
| VF2 VF1 |  
[A]  
Iio =  
Rf  
Ri ×(1 + Rf / Rs)  
50[k]  
C1  
RK  
S1  
Ri  
3. Input Bias Current (Ib)  
VCC  
500[k]  
0.1[μF]  
EK  
| VF4 VF3 |  
Rs  
+15[V]  
[A]  
Ib =  
RK 500[k]  
50[] 10[k]  
2×Ri× (1 + Rf / Rs)  
DUT  
VEE  
10[k]  
50[]  
NULL  
S3  
RL  
4. Large Signal Voltage Gain (Av)  
Ri  
Rs  
C3  
VF  
V
S2  
1000[pF]  
-15[V]  
EK×(1+Rf /Rs)  
Δ
Vicm  
Av = 20×Log  
[dB]  
|VF5-VF6|  
5. Common-mode Rejection Ration (CMRR)  
Vicm×(1+Rf/Rs)  
Fig. 120 Measurement circuit1 (one channel only)  
Δ
CMRR = 20×Log  
[dB]  
|VF8-VF7|  
6. Power supply rejection ratio (PSRR)  
Vcc×(1+Rf /Rs)  
|VF10-VF9|  
Δ
PSRR = 20×Log  
[dB]  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
17/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Measurement Circuit 2 Switch Condition  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14  
SW No.  
Supply Current  
1
2
3
4
5
6
7
8
9
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
High Level Output Voltage  
Low Level Output Voltage  
Output Source Current  
Output Sink Current  
Slew Rate  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
Input voltage  
SW4  
VH  
R2  
SW5  
VCC  
VL  
A
t
Input wave  
Output voltage  
SW1  
RS  
SW2  
R1  
SW3  
SR=ΔV/Δt  
SW6  
VIN-  
SW7  
VIN+  
SW8  
SW9 SW10 SW11 SW12 SW13 SW14  
VH  
VEE  
ΔV  
A
RL  
CL  
V
V
VL  
VOUT  
t
Δ
t
Output wave  
Fig. 121 Measurement Circuit 2 (each Op-Amp)  
Fig. 122 Slew Rate Input Waveform  
Measurement Circuit 3 Amplifier To Amplifier Coupling  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
VIN  
R2  
R1  
R2  
VOUT1  
=0.5[Vrms]  
V
V
VOUT2  
100 VOUT1  
×
CS 20 log  
×
VOUT2  
Fig. 123 Measurement Circuit 3  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
18/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms  
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.  
1.Absolute maximum ratings  
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of  
electrical characteristics or damage to the part itself as well as peripheral components.  
1.1 Power supply voltage (VCC-VEE)  
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing  
deterioration of the electrical characteristics or destruction of the internal circuitry.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.  
1.3 Input common-mode voltage range (Vicm)  
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration  
of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage  
range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.  
1.4 Operating and storage temperature ranges (Topr,Tstg)  
The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient  
temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of  
temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.  
1.5 Power dissipation (Pd)  
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25). For packaged  
products, Pd is determined by the maximum junction temperature and the thermal resistance.  
2. Electrical characteristics  
2.1 Input offset voltage (Vio)  
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage  
difference required for setting the output voltage to 0 V.  
2.2 Input offset voltage drift (Vio/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (Iio)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
2.4 Input offset current drift (Iio/T)  
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.  
2.5 Input bias current (Ib)  
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the  
non-inverting terminal and the input bias current at the inverting terminal.  
2.6 Circuit current (ICC)  
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.  
2.7 High level output voltage/low level output voltage (VOH/VOL)  
Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output  
voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low  
level output voltage the lower limit.  
2.8 Large signal voltage gain (AV)  
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting  
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.  
AV = (output voltage fluctuation) / (input offset fluctuation)  
2.9 Input common-mode voltage range (Vicm)  
Indicates the input voltage range under which the IC operates normally.  
www.rohm.com  
2009.05 - Rev.A  
19/24  
© 2009 ROHM Co., Ltd. All rights reserved.  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
2.10 Common-mode rejection ratio (CMRR)  
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).  
CMRR = (change in input common-mode voltage) / (input offset fluctuation)  
2.11 Power supply rejection ratio (PSRR)  
Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation).  
SVR = (change in power supply voltage) / (input offset fluctuation)  
2.12 Output source current/ output sink current (IOH/IOL)  
The maximum current that can be output under specific output conditions, it is divided into output source current and  
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current the  
current flowing into the IC.  
2.13 Channel separation (CS)  
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output  
voltage of a driven channel.  
2.14 Slew rate (SR)  
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.  
2.15 Gain bandwidth product (GBW)  
The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value  
of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency).  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
20/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Derating curves  
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature). IC is heated  
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that  
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal  
resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum  
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead  
frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called  
thermal resistance, represented by the symbol θja[/W].The temperature of IC inside the package can be estimated by this  
thermal resistance. Fig.124(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient  
temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below:  
θja (Tj-Ta) / Pd  
[/W]  
・・・・・ (Ⅰ)  
Derating curve in Fig.124(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that  
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package  
condition, wind velocity, etc even when the same of package is used.  
Thermal reduction curve indicates a reference value measured at a specified condition. Fig.125(a)(d) show a derating  
curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2904HFVM-C, BA3404, BA2902S, BA2902.  
[W]  
Power dissipation of LSI  
Pd (max)  
θja = ( Tj Ta ) / Pd  
[
/W]  
P2  
P1  
θja2 < θja1  
θ' ja2  
Ta [ ]  
Ambient temp  
er  
a
tu  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
Tj [  
]
Chip surface  
te  
m
p
e
ra  
tu  
re  
0
25  
50  
75  
100  
Ta [  
125  
150  
P [W]  
Power dissipation  
]
Ambient temperature  
(b) Derating curve  
(a) Thermal resistance  
Fig. 124 Thermal resistance and derating curve  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
BA10324AFV  
700mW(*11)  
BA10358F  
620mW(*9)  
BA10358FV  
BA10324AF  
490mW(*12)  
550mW(*10)  
0
25  
Ambient  
50  
te  
75  
100  
Ta []  
125  
0
25  
50  
te  
75  
100  
Ta []  
125  
m
p
er  
atu  
re  
Ambient  
m
p
er  
atu  
re  
(a)BA10358 family  
(b)BA10324A family  
1000  
1000  
800  
600  
400  
200  
0
BA2904F  
BA2902FV  
BA2902KN  
870mW(*16)  
780mW(*13)  
800  
BA2904FV  
660mW(*17)  
690mW(*14)  
BA2904FVM  
600  
BA2904HFVM-C  
BA2902F  
590mW(*15)  
610mW(*18)  
BA3404F  
400  
BA3404FVM  
BA2902SFV  
BA2902SKN  
BA2904SF  
200  
BA2904SFV  
BA2902SF  
BA2904SFVM  
0
105  
105  
100  
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
125  
150  
0
Ambient temperature Ta []  
Ambient temperature Ta []  
(c)BA2904S/BA2904/BA3404 family,BA2904H  
(d)BA2902S/BA2902 family  
*9)  
6.2  
5.5  
7.0  
4.9 6.2 5.5 4.8 7.0 5.3 4.9  
Unit  
[mW/]  
When using the unit above Ta=25[], subtract the value above per degree[].  
Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted.  
Fig. 125 Derating curve  
www.rohm.com  
2009.05 - Rev.A  
21/24  
© 2009 ROHM Co., Ltd. All rights reserved.  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Precautions  
1) Unused circuits  
VCC  
When there are unused circuits, it is recommended that they be connected as  
in Fig.126, setting the non-inverting input terminal to a potential within the in-phase  
input voltage range (Vicm).  
Please keep this  
potencial in Vicm  
2) Input voltage  
Applying VEE+32[V](BA2904S/BA2904/BA2902S/BA2902 family, BA2904HFVM-C)  
and VEE+36[V](BA3404 family) to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, irrespective of the  
supply voltage.However, this does not ensure normal circuit operation.  
Please note that the circuit operates normally only when the input voltage is  
within the common mode input voltage range of the electric characteristics.  
VEE  
Fig. 126 Example of processing unused  
3) Power supply (single / dual)  
The op-amp operates when the voltage supplied is between VCC and VEETherefore, the single supply op-mp can be used  
as a dual supply op-amp as well.  
4) Power dissipation (Pd)  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise  
in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation  
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating  
curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output  
and the power supply, or the output and GND may result in IC destruction.  
6) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
7) Radiation  
This IC is not designed to withstand radiation.  
8) IC handing  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical  
characteristics due to piezoelectric (piezo) effects.  
9) IC operation  
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to  
the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of  
the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class  
A operation will suppress crossover distortion.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the  
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly  
process as well as during transportation and storage.  
11) Output capacitor  
Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE,  
causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation  
due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance  
less than 0.1μF.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
22/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
Ordering part number  
B
A
2
9
0
4
F
V
-
E
2
Part No.  
Part No.  
Package  
F: SOP8  
SOP14  
FV: SSOP-B8  
SSOP-B14  
FVM: MSOP8  
KN:VQFN16  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16)  
TR: Embossed tape and reel  
(MSOP8)  
10358,10324A  
2904S,2904  
2904H,3404  
B902S,2902  
SOP8  
<Tape and Reel information>  
5.0 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
+
6
°
4°  
4
°
Quantity  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
1.27  
Direction of feed  
1pin  
0.42 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SOP14  
<Tape and Reel information>  
8.7 0.2  
(MAX 9.05 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
14  
8
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
1.27  
0.4 0.1  
0.1  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B8  
<Tape and Reel information>  
3.0 0.2  
(MAX 3.35 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
8
7 6  
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2 3  
4
0.15 0.1  
S
0.1  
0.22  
+0.06  
0.04  
-
M
0.08  
Direction of feed  
1pin  
(0.52)  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
23/24  
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,  
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM  
Technical Note  
SSOP-B14  
<Tape and Reel information>  
5.0 0.2  
Tape  
Embossed carrier tape  
2500pcs  
14  
8
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
(MAX 3.25 include BURR)  
Tape  
Embossed carrier tape  
3000pcs  
+
6°  
4°  
Quantity  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
–0.03  
0.145  
0.475  
S
0.22  
–0.04  
0.08  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.65  
Reel  
(Unit : mm)  
VQFN16  
<Tape and Reel information>  
4.2 0.1  
4.0 0.1  
Tape  
Embossed carrier tape (with dry pack)  
(1.35)  
12  
9
Quantity  
2500pcs  
13  
16  
8
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
0.22 0.051  
4
M
(
)
0.05  
0.05  
0.5  
(0.22)  
(0.5  
)
Notice :  
Do not use the dotted line area  
for soldering  
3-(0.35)  
Direction of feed  
1pin  
+0.1  
0.6  
0.3  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.05 - Rev.A  
24/24  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A
配单直通车
BA2902SFV产品参数
型号:BA2902SFV
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:ROHM CO LTD
零件包装代码:SSOP
包装说明:LSSOP,
针数:14
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.33.00.01
风险等级:5.61
放大器类型:OPERATIONAL AMPLIFIER
最大平均偏置电流 (IIB):0.25 µA
标称共模抑制比:80 dB
最大输入失调电压:10000 µV
JESD-30 代码:R-PDSO-G14
JESD-609代码:e2
长度:5 mm
功能数量:4
端子数量:14
最高工作温度:105 °C
最低工作温度:-40 °C
封装主体材料:PLASTIC/EPOXY
封装代码:LSSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, LOW PROFILE, SHRINK PITCH
峰值回流温度(摄氏度):NOT SPECIFIED
认证状态:Not Qualified
座面最大高度:1.25 mm
标称压摆率:0.2 V/us
供电电压上限:32 V
标称供电电压 (Vsup):5 V
表面贴装:YES
技术:BIPOLAR
温度等级:INDUSTRIAL
端子面层:Tin/Copper (Sn/Cu)
端子形式:GULL WING
端子节距:0.65 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED
标称均一增益带宽:500 kHz
宽度:4.4 mm
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!