欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
更多

产品型号BD81842MUV-M的Datasheet PDF文件预览

Datasheet  
Power Supply IC Series for TFT-LCD Panels  
Automotive Panel Power Management IC  
BD81842MUV-M  
Applications  
TFT-LCD Panels which are used in car navigation,  
in-vehicle center panel, and instrument cluster.  
General Description  
The BD81842MUV-M is a power management IC for  
TFT-LCD panels which are used in car navigation,  
in-vehicle center panel, and instrument cluster.  
Incorporates high-power FET with low on resistance for  
large currents that employ high-power packages, thus  
driving large current loads while suppressing the  
generation of heat. A charge pump controller is  
incorporated as well, thus greatly reducing the number  
of application components. Also Gate Shading Function  
is included.  
Features  
AEC-Q100 Qualified(Note 1)  
Boost DC/DC converter; 18 V / 2.5 A switch current.  
Switching frequency: 2.1 MHz  
Operational Amplifier (short current 200mA)  
Incorporates Positive / Negative Charge-pump  
Controllers.  
Gate Shading Function  
Protection circuits:  
Key Specifications  
Under Voltage Lockout  
Protection Circuit  
Input voltage range :  
2.0V to 5.5V  
6.0V to 18V  
12V to 34V  
200mA (Typ.)  
2.1MHz (Typ.)  
AVDD Output voltage range :  
SRC Output voltage range :  
VCOM Output current :  
Oscillator Frequency :  
Thermal Shutdown Circuit (Latch Mode)  
Over Current Protection Circuit (AVDD)  
Timer Latch Mode Short Circuit Protection (AVDD  
SRC /VGL)  
Over / Under Voltage Protection Circuit for Boost  
DC/DC Output  
Operating temperature range : -40to +105℃  
Special Characteristics  
No SCP time included (185ms from UVLO-off)  
FB Regulation voltage :  
Oscillator Frequency : ±10.5% (Ta=-40105)  
±3% (Ta=-40105)  
(Note1: Grade 2)  
Package  
W(Typ.) x D(Typ.) x H(Max.)  
4.0mm x 4.0mm x 1.0mm  
Typical Application Circuit (TOP VIEW)  
VQFN24SV4040  
)  
VIN  
1
AVDD  
F
1
24  
23  
22  
21  
20  
19  
1
1
2
18  
INP  
B  
17  
16  
INN  
3
4
VCOM  
COMP  
RSTIN  
15  
14  
AGND1  
AVDD  
5
6
AVDD  
DRP  
AGND2  
VIN  
VIN  
13  
0
7
8
9
10  
11  
12  
0
Figure 1. Application Circuit  
Product structureSilicon monolithic integrated circuit This product is not designed for protection against radioactive rays  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
1/31  
TSZ2211114001  
Daattaasshheeeett  
BD81842MUV-M  
Contents  
General Description ..................................................................................................................................................................1  
Key Specifications ....................................................................................................................................................................1  
Special Characteristics.............................................................................................................................................................1  
Applications...............................................................................................................................................................................1  
Features .....................................................................................................................................................................................1  
Pin Configuration......................................................................................................................................................................3  
Pin Descriptions........................................................................................................................................................................3  
Block Diagram...........................................................................................................................................................................4  
Main Block Function .................................................................................................................................................................5  
Absolute Maximum Ratings .....................................................................................................................................................6  
Thermal Resistance ..................................................................................................................................................................6  
Recommended Operating Range.............................................................................................................................................6  
Electrical characteristics..........................................................................................................................................................7  
Electrical characteristic curves ...............................................................................................................................................9  
Application Example...............................................................................................................................................................15  
Power Sequence .....................................................................................................................................................................16  
Protect Operation....................................................................................................................................................................17  
Reset Function ........................................................................................................................................................................17  
Gate Shading Function...........................................................................................................................................................18  
How to select parts of application .........................................................................................................................................19  
PCB Layout Guide...................................................................................................................................................................24  
I/O Equivalent Circuit Diagrams.............................................................................................................................................26  
Operation Notes ......................................................................................................................................................................27  
Ordering Information ..............................................................................................................................................................29  
Marking Diagrams ...................................................................................................................................................................29  
Physical Dimension, Tape and Reel Information..................................................................................................................30  
Revision History......................................................................................................................................................................31  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
2/31  
23. Jun. 2016 Rev.002  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Pin Configuration (TOP VIEW)  
INP  
INN  
PGND1  
FB  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
VCOM  
AGND1  
AVDD  
DRP  
COMP  
RSTIN  
AGND2  
VIN  
BD81842MUV-M  
6
Figure 2. Pin Configuration  
Pin Descriptions  
Pin No. Pin Name  
Function  
1
2
INP  
INN  
VCOM Amplifier input +  
VCOM Amplifier input -  
3
VCOM  
AGND1  
AVDD  
DRP  
VCOM Amplifier output  
4
Ground  
5
Supply voltage input for VCOM, charge pump  
Drive pin of the positive charge pump  
Drive pin of the negative charge pump  
High voltage switch control pin  
Open drain reset output  
6
7
DRN  
8
CTL  
9
RST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
FBP  
Positive charge pump feed back  
Negative charge pump feed back  
Internal Reference voltage output  
Supply voltage input for PWM  
Ground  
FBN  
VREF  
VIN  
AGND2  
RSTIN  
COMP  
FB  
Reset comparator input  
BOOST Error amplifier output  
BOOST Error amplifier input  
BOOST FET ground  
PGND1  
PGND2  
SW  
BOOST FET ground  
BOOST FET Drain  
RE  
Gate High voltage Fall set pin  
Gate High voltage output set pin  
Gate High voltage input set pin  
GSOUT Delay Adjust pin  
GSOUT  
SRC  
DLY  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
3/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Block Diagram  
13  
VIN  
VREF  
Fall  
0.265V  
Fall/Thermal  
Control  
Reference  
Voltage  
12  
(1.25V)  
SW  
20  
Error Amplifier  
FB  
17  
Digital Control  
Block  
1.25V  
PGND1  
Comparator  
18  
COMP  
16  
PGND2  
19  
Current Sense and  
Limit  
Oscillator  
Sequence  
AVDD  
Control  
5
0.265V  
AVDD  
FBN  
FBP  
DRN  
DRP  
Negative  
Charge Pump  
11  
7
AGND1  
AVDD  
1.25V  
Positive  
Charge pump  
6
10  
AGND1  
AVDD  
INN  
INP  
2
1
VCOM  
3
4
AGND1  
DLY  
CTL  
24  
8
High Voltage  
Switch Control  
SRC  
RST  
RE  
23  
9
21  
22  
GSOUT  
1.25V  
185ms  
RSTIN  
15  
AGND2  
14  
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
4/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Main Block Function  
Boost Converter  
A controller circuit for DC/DC boosting.  
The switching duty is controlled so that the feedback voltage FB is set to 1.25 V (typ.).  
A soft start operates at the time of starting.  
Positive Charge Pump  
A controller circuit for the positive-side charge pump.  
The switching amplitude is controlled so that the feedback voltage FBP will be set to 1.25 V (typ.).  
Negative Charge Pump  
A controller circuit for the negative-side charge pump.  
The switching amplitude is controlled so that the feedback voltage FBN will be set to 0.265 V (Typ.).  
Gate Shading Controller  
A controller circuit for P-MOS FET Switch  
The GSOUT switching synchronize with CTL input.  
Please input voltage below VIN to CTL.  
When VIN drops below UVLO threshold or RST=Low(=RSTIN<1.25V), GSOUT is pulled High(=SRC).  
VCOM  
1-channel operational amplifier block.  
Reset  
An open-drain output(RST) refer from RSTIN voltage(up to threshold voltage 1.25V).  
RST keeps High(need a pull-up resistor connected to VIN) dulling to 185ms from start-up.  
VREF  
A block that generates internal reference voltage of 1.25V (Typ.).  
VREF is keep High when the thermal/short-current-protection shutdown circuit.  
TSD/UVLO/OVP/UVP  
The thermal shutdown circuit is shut down at an IC internal temperature of 160.  
The under-voltage lockout protection circuit shuts down the IC when the VIN is 1.85 V (Typ.) or below.  
The over-voltage protection circuit when the AVDD is 20 V (Typ.) or over.  
The under-voltage protection circuit when the AVDD is 1.3 V (Typ.) or under  
Start-up Controller  
A control circuit for the starting sequence.  
Controls to start in order of VIN VGL AVDDSRC  
(Please refer to Fig.27 of 16 page for details.)  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
5/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Absolute Maximum Ratings(Ta= 25)  
LIMITS  
PARAMETER  
SYNBOL  
Unit  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
TYP  
MAX  
7
Power Supply Voltage  
VIN  
-
-
-
-
-
V
V
V
V
V
AVDD, SW, DRP, DRN, VCOM  
SRC, GSOUT, RE  
20  
36  
7
Output Pin  
RST, COMP, VREF  
SRC – GSOUT  
40  
FB, FBP, FBN  
INN, INP  
-0.3  
-0.3  
-0.3  
-
-
VIN+0.3  
20  
V
V
V
Input Pin  
Function Pin Voltage  
RSTIN, DLY, CTL  
VIN+0.3  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Tjmax  
Topr  
-
-
-
-
150  
105  
150  
-40  
-55  
Tstg  
Thermal Resistance(Note 2)  
Thermal Resistance (Typ)  
Symbol  
Unit  
Parameter  
1s(Note 4)  
2s2p(Note 5)  
VQFN24SV4040  
Junction to Ambient  
θJA  
150.6  
20  
37.9  
9
℃/W  
℃/W  
Junction to Top Characterization Parameter(Note 3)  
ΨJT  
(Note 2)Based on JESD51-2A(Still-Air).  
(Note 3)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 4)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
(Note 5)Using a PCB board based on JESD51-5, 7.  
Thermal Via(Note 6)  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
Pitch  
1.20mm  
Diameter  
4 Layers  
FR-4  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
70µm  
Copper Pattern  
Thickness  
35µm  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
74.2mm x 74.2mm  
74.2mm x 74.2mm  
(Note 6) This thermal via connects with the copper pattern of all layers.  
Recommended Operating Range  
Symbol  
VIN  
MIN  
TYP  
MAX  
5.5  
18  
Unit  
V
Parameter  
Power Supply Voltage  
2.0  
6
-
-
-
AVDD  
SRC  
V
Output Pin  
12  
34  
V
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
6/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristics (unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
GENERAL  
No Switching  
Ta=-40105℃  
VIN rising  
Ta=-40105℃  
No load  
Ta=25℃  
No load  
Ta=-40105℃  
Circuit Current  
IVIN  
-
1.75  
1.225  
1.2125  
-
1.2  
1.85  
1.25  
1.25  
160  
63  
3
1.95  
1.275  
1.2875  
-
mA  
V
Under Voltage Lockout Threshold  
VUVLO  
V
Internal Reference Output  
Voltage  
VREF  
V
Thermal Shutdown (rising)  
TSD  
TSCP  
ms  
Junction Temp  
Duration to Trigger Fault  
Condition  
FB , FBP or FBN  
below threshold  
51  
75  
BOOST CONVERTER (AVDD)  
1.2375  
1.2125  
0.9  
1.25  
1.25  
1.0  
1.2625  
1.2875  
1.1  
V
V
Ta=25℃  
FB Regulation Voltage  
VFB  
Ta=-40105℃  
FB falling  
FB Fault Trip Level  
VTL_FB  
IFB  
V
FB= 1.5V  
Ta=-40105℃  
FB Input Bias Current  
-
0.1  
2
µA  
SW=20V  
Ta=-40105℃  
SW Leakage Current  
Maximum switching Duty Cycle  
SW ON-Resistance  
ISW_L  
MDUTY  
RSW  
-
85  
-
0
10  
95  
µA  
%
90  
FB= 1.0V  
200  
4.5  
20  
250  
6.5  
22  
mΩ  
A
SW= 200mA  
Ta=-40105℃  
AVDD rising  
AVDD falling  
Ta=-40105℃  
SW Current Limit  
ISWLIM  
VOVP  
2.5  
18  
1
Over Voltage Protection  
Under Voltage Protection  
BOOST Soft Start Time  
V
VUVP  
1.3  
15.5  
2.1  
2.1  
3
V
TSS_FB  
12.5  
1.9  
1.88  
18.5  
2.3  
2.32  
ms  
MHz Ta=25℃  
Oscillator frequency  
FSW  
MHz Ta=-40105℃  
RESET  
RST Output Low Voltage  
RSTIN Threshold Voltage  
VRST  
VTH_L  
-
0.05  
1.25  
0
0.2  
1.32  
6
V
V
RST =1.2mA  
RSTIN rising  
Ta=-40105℃  
RSTIN=0 to VIN-0.3  
Ta=-40105℃  
No SCP Zone  
1.18  
-
RSTIN Input Current  
IRSTIN  
µA  
ms  
RST Blanking Time  
Operational Amp rifer  
Input Range  
TNO_SCP  
165  
185  
205  
Ta=-40105℃  
VRANGE  
VOS  
0
-
AVDD  
15  
V
mV  
µA  
V
Offset Voltage  
-
2
INP= 5.0V  
INP= 5.0V  
Ta=-40105℃  
Input Current  
IINP  
-
-
0
3
VOH  
5.03  
4.97  
200  
40  
5.06  
-
VCOM = +50mA  
VCOM = -50mA  
INP= 5.0V  
Output Swing Voltage  
(INP= 5.0V)  
VOL  
4.94  
-
V
Short Circuit Current  
Slew Rate  
ISHT_VCOM  
SR  
400  
250  
mA  
V/us  
10  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
7/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristics (unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25) (Continued)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
Negative Charge pump driver (VGL)  
FBN Regulation Voltage  
242  
239  
400  
-
265  
265  
450  
0.1  
525  
0
288  
291  
500  
15  
mV  
mV  
mV  
µA  
Ta=25℃  
VFBN  
VTL_FBN  
IFBN  
Ta=-40105℃  
FBN Fault Trip Level  
FBN rising  
FBN= 0.1V  
Ta=-40105℃  
FBN Input Bias Current  
Oscillator frequency  
FCPN  
425  
-
625  
10  
kHz  
µA  
Ta=-40105℃  
FBN=1.0V  
Ta=-40105℃  
DRN Leakage Current  
Positive Charge pump driver (SRC)  
IDRN_L  
1.2325  
1.2125  
0.95  
-
1.25  
1.25  
1.0  
0.1  
525  
0
1.2675  
1.2875  
1.05  
15  
V
V
Ta=25℃  
FBP Regulation Voltage  
VFBP  
Ta=-40105℃  
FBP falling  
FBP Fault Trip Level  
FBP Input Bias Current  
Oscillator frequency  
VTL_FBP  
IFBP  
V
FBP= 1.5V  
Ta=-40105℃  
µA  
kHz  
µA  
ms  
FCPP  
425  
-
625  
Ta=-40105℃  
FBP= 1.5V  
Ta=-40105℃  
DRP Leakage Current  
Soft-Start Time  
IDRP_L  
TSSP  
10  
3.2  
3.9  
4.6  
Ta=-40105℃  
Gate Shading Function (GSOUT)  
DLY Source Current  
DLY Threshold Voltage  
IDLY  
VTL_DLY  
VIN_H  
3.5  
5
6.5  
1.65  
VIN  
µA  
V
Ta=-40105℃  
DLY falling  
0.85  
1.25  
Ta=-40105℃  
Depend on VIN  
Ta=-40105℃  
Depend on VIN  
Ta=-40105℃  
VIN  
×0.65  
CTL Input Voltage High  
CTL Input Voltage Low  
-
-
V
VIN  
×0.25  
VIN_L  
0
V
RSTIN=0 to VIN-0.3  
Ta=-40105℃  
CTL Input Bias Current  
ICTL  
-
-
-
-
-
-
0
6
µA  
ns  
Propagation delay time (Rising)  
Propagation delay time (Falling)  
SRC -GSOUT ON Resistance  
GSOUT-RE ON Resistance  
GSOUT-GND ON Resistance  
TGS_R  
TGS_F  
RGS_H  
RGS_M  
RGS_L  
100  
100  
15  
200  
200  
30  
SRC= 25V  
SRC= 25V  
DLY = 1.5V  
DLY = 1.5V  
DLY = 1.0V  
ns  
Ω
30  
100  
5.0  
Ω
2.5  
kΩ  
This product is not designed for protection against radio active rays.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
8/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristic curves (Reference data)  
(Unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
105℃  
25℃  
105℃  
25℃  
-40℃  
-40℃  
Figuire 4. Circuit Current  
(No switching)  
Figure 5. Circuit Current  
(Switching)  
Figure 6. Dependent on  
Temperature Frequency  
Figure 7. Dependent on Input  
Voltage Frequency  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
9/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristic curves (Reference data)  
(Unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
25℃  
-40℃  
-40℃  
25℃  
105℃  
105℃  
Figure 8. VREF Line Regulation  
Figure 9. VREF Load Regulation  
-40℃  
25℃  
VIN=3.3V  
AVDD=10.0V  
Fsw=2.121MHz  
105℃  
VGH,VGLNoLoad  
Figure 10. Boost Converter Efficiency  
Figure 11. COMP V.S.DUTY  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
10/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristic curves (Reference data)  
(Unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
Figure 13. COMP Source Current  
Figure 12. COMP Sink Current  
IAVDD  
IAVDD  
AVDD  
AVDD  
Figure 15. Load Transient  
Figure 14. Load Transient  
Response Falling  
Response Rising  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
11/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristic curves (Reference data) – Continued  
(Unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
INP  
INP  
INN=VCOM  
INN=VCOM  
Figure 16. VCOM Slew Rate  
Figure 17. VCOM Slew Rate  
falling)  
Rising)  
10  
1
0.1  
0.01  
0.001  
0.001  
0.01  
0.1  
1
10  
C_DLY [uF]  
Figure 18. C_DLY vs. delay time  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
12/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristic curves (Reference data) – Continued  
(Unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
CTL  
CTL  
GSOUT(RE pull down to AVDD)  
GSOUT(RE pull down to GND)  
Figure 20. Gate Shading Wave form2  
Figure 19. Gate Shading Wave form1  
SRC  
SRC  
AVDD  
VIN  
AVDD  
VIN  
VGL  
VGL  
Figure 21. Power On Sequence1  
(Main Output)  
Figure 22. Power Off Sequence1  
(Main Output)  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
13/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Electrical characteristic curves (Reference data) – Continued  
(Unless otherwise specified VIN = 3.3V, AVDD = 10V and Ta=25)  
SRC  
SRC  
AVDD  
AVDD  
VIN  
VIN  
GSOUT  
GSOUT  
RST  
RST  
Figure 23. Power Off Sequence2  
(R_RST_U=10k,R_RST_D=10k)  
Figure 24. Power Off Sequence3  
(R_RST_U=10k,R_RST_D=OPEN)  
VIN  
DLY  
CTL  
GSOUT  
Figure 25. Power On Sequence2  
(CTL=signal, RE pull down to AVDD)  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
14/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Application Example  
)  
VIN  
When resistor cannot be put  
near the INP,  
and concerned about the noise,  
please insert a capacitor.  
(0.1uF-1uF)  
AVDD  
24  
23  
22  
21  
20  
19  
1
2
18  
INP  
17  
16  
INN  
3
4
VCOM  
COMP  
RSTIN  
15  
14  
AGND1  
AVDD  
5
6
AVDD  
DRP  
AGND2  
VIN  
VIN  
13  
7
8
9
10  
11  
12  
When insert R_VIN, VIN strengthens  
the tolerance for the power supply  
noise by a filter effect.  
Figure 26. Application Example  
Application circuit components list (VIN=3.3V, AVDD=10V, SRC=20V, VGL=-7.1V, VCOM=5V)  
Value  
Parts  
Unit  
Company  
Parts Number  
name  
Min  
0.47  
1
Typ  
1.0  
10  
Max  
C_VIN  
R_VIN  
-
uF  
TDK  
ROHM  
TDK  
CGA3E1X7R1C105M  
MCR03  
20  
C_PIN1  
C_PIN2  
C_AVD1  
C_AVD2  
L_AVD  
4.7  
4.7  
4.7  
4.7  
4.7  
-
10  
-
uF  
uF  
uF  
uF  
uH  
V/A  
k  
kΩ  
kΩ  
pF  
kΩ  
kΩ  
kΩ  
uF  
nF  
kΩ  
uF  
uF  
CGA5L1X7R1C106M  
CGA5L1X7R1C106M  
CGA5L1X7R1E106M  
CGA5L1X7R1E106M  
LTF5022T-100M1R3-H  
RB080L-30DD  
MCR03  
10  
-
22  
22  
22  
-
TDK  
10  
TDK  
10  
TDK  
10  
TDK  
D_AVD  
30/5  
91  
ROHM  
ROHM  
ROHM  
ROHM  
TDK  
R_AVD_U  
R_AVD_D  
R_CMP  
C_CMP  
R_RST_U  
R_RST_D  
R_RST  
6.8  
6.8  
-
330  
330  
-
13  
MCR03  
24  
MCR03  
-
2200  
10  
-
CGA3E2X7R1H222M  
MCR03  
-
-
ROHM  
ROHM  
ROHM  
TDK  
-
10  
-
MCR03  
-
10  
-
MCR03  
C_RST  
-
1.0  
33  
-
CGA3E1X7R1C105M  
CGA3E2X7R1H333M  
MCR03  
C_DLY  
10  
0.2  
0.047  
0.1  
100  
5.1  
-
TDK  
R_RE  
1.0  
0.1  
0.22  
ROHM  
TDK  
C_AVDD  
C_REF  
CGA3E2X7R1H104M  
CGA3E2X7R1C224M  
0.47  
TDK  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
15/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Value  
Typ  
1.0  
Parts  
name  
Unit  
Company  
Parts Number  
Min  
0.47  
0.047  
-
Max  
10  
C_VGL  
C_FCN  
uF  
uF  
TDK  
TDK  
CGA3E1X7R1C105M  
CGA3E2X7R1H104M  
DAN217UMFH  
MCR03  
0.1  
1.0  
-
D_CPN  
80/100  
120  
16  
V/mA  
kΩ  
ROHM  
ROHM  
ROHM  
TDK  
R_VGL_U  
R_VGL_D  
C_VGL_U  
C_SRC1  
C_FCP1  
C_FCP2  
C_CPP  
6.8  
330  
330  
4700  
10  
6.8  
kΩ  
MCR03  
10  
100  
1.0  
pF  
CGA3E2NP01H101J  
CGA4J3X7R1H105M  
CGA3E2X7R1H104M  
CGA3E2X7R1H104M  
CGA3E2X7R1H104M  
DAN217UMFH  
DAN217UMFH  
MCR03  
0.47  
0.047  
0.047  
0.047  
-
uF  
TDK  
0.1  
1.0  
1.0  
1.0  
-
uF  
TDK  
0.1  
uF  
TDK  
0.1  
uF  
TDK  
D_CPP1  
D_CPP2  
R_SRC_U  
R_SRC_D  
C_SRC_U  
C_SRC2  
R_COM_U  
R_COM_D  
C_VCOM  
80/100  
80/100  
150  
10  
V/mA  
V/mA  
kΩ  
ROHM  
ROHM  
ROHM  
ROHM  
TDK  
-
-
6.8  
330  
330  
4700  
10  
6.8  
kΩ  
MCR03  
10  
100  
1.0  
pF  
CGA3E2NP01H101J  
CGA4J3X7R1H105M  
MCR03  
0.47  
6.8  
uF  
TDK  
51  
330  
330  
10  
kΩ  
ROHM  
ROHM  
TDK  
6.8  
51  
kΩ  
MCR03  
0.1  
1.0  
uF  
CGA3E1X7R1E105M  
Please set in consideration of temperature properties and DC bias properties not to become less than the minimum.  
COMP parts and the coil need adjustment by output voltage and load. Please consider it based on enough evaluations with the actual model.  
Power Sequence  
TSS_FB=15.5ms  
TSSP=3.9ms  
DLY=1.25  
Before VIN input is entered, CTL  
~  
185ms  
No SCP Zone  
Figure 27. Power Sequence  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
16/31  
23. Jun. 2016 Rev.002  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Protect Operation  
VIN UVLO  
AVDD  
SRC  
1.65V  
1.85V  
VGL  
Falling (Typ.)  
Rising (Typ.)  
Action  
All channels shut-down. Start-up Sequence Resets.  
Thermal Shutdown  
AVDD  
SRC  
VGL  
Threshold (Typ.)  
Action  
160℃  
All channels are latched in shut-down condition as soon as detecting Thermal Shutdown.  
For Recovery, power supply should be inputted under UVLO voltage.  
Over Voltage Protection  
AVDD  
20V  
Threshold (Typ.)  
Action  
STOP switching of AVDD.  
Under Voltage Protect  
AVDD  
1.3V  
Threshold (Typ.)  
Action  
STOP switching of AVDD.  
Over Current Protect  
AVDD  
2.5A  
Threshold (Min.)  
Action  
STOP switching of AVDD.  
Short Circuit Protect  
Threshold (Typ.)  
Action  
AVDD  
AVDD x 0.8  
SRC  
SRC x 0.8  
VGL  
VGL x 0.8  
All channels are latched in shut-down condition after 63msec(Typ.) detecting Short Circuit Protect in  
any channel.  
For Recovery, power supply should be inputted under UVLO voltage.  
Reset Function  
After UVLO release, 185msec or less Low  
since 185msec High  
RST  
1.25V(VREF)  
T_CON  
RSTIN  
RST_EN  
AGND2  
Fig.28 Reset Explanation  
The RST is set to Low when the RSTIN voltage is less than 1.25V and is set to High (pulled-up by a resistor to VIN) when the  
RSTIN voltage is greater than or equal to 1.25V. However, during the time when power supply is ON for 185ms (Typ), RST  
is held High regardless of RSTIN voltage.  
Gate Shading function is activated when RST_EN is High. When RSTIN is Low, the Gate Shading function cannot be used.  
If the Gate Shading function will not be used, the SRC, RE, and CTL must be pulled-down by a resistor or connected to GND.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
17/31  
23. Jun. 2016 Rev.002  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Gate Shading Function  
Fig.29 Gate Shading Explanation  
To control the Gate Shading output (GSOUT) by the CTL input, the RSTIN and DLY pin voltages must be set greater than  
1.25V. If the DLY pin is left open, the DLY voltage immediately becomes High (greater than 1.25V) when the power supply is  
turned ON. To add a delay time (t_DELAY) before DLY voltage becomes High, connect a capacitor (C_DLY) to the DLY pin  
The delay time (t_DELAY) can be calculated using the following formula.  
t_DELAY (C_DLY 1.25V) 5uA  
[sec]  
When the CTL input is High (0.65×VIN to VIN), the MOS between SRC and GSOUT turns ON and sets the output voltage of  
GSOUT equal to SRC.  
When the CTL input is Low (0 to 0.25×VIN), the MOS between GSOUT and RE turns ON, and GSOUT will be discharged  
down to RE voltage by a slope decided by the external resistor (R_RE) and capacitor (C_GSO).  
To adjust a slope, the following setting value is recommended; for resistor (R_RE):200 - 5.1k, for capacitor (C_GSO):less  
than 0.1uF. It may cause the efficiency aggravation by setting out of this range.  
The voltage V that GSOUT discharges during the time (t_WL) when CTL input is Low can be calculated using the following  
formula.  
t_WL  
V SRC1exp   
[V]  
C_GSO R_RE  
But the loss occurs when C_GSO is added. The loss P can be calculated using the following formula.  
P Frequency(CTL) ΔV2 C_GSO  
[V]  
Fig.30 Gate Shading I/O Waveform  
If the Gate Shading function will not be used, the SRC, RE, and CTL must be pulled-down by a resistor or connected to GND.  
And the DLY, please connect capacitor because there is the concern such as noises.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
18/31  
23. Jun. 2016 Rev.002  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
How to select parts of application  
(1-1) Setting the Output L Constant (Boost Converter)  
The coil to use for output is decided by the rating current ILR and input current maximum value IINMAX of the coil.  
VIN  
I
INMAX + ΔIL should not reach  
IL  
the rating value level  
IL  
L
ILR  
AVDD  
IINMAX  
average current  
Co  
IINMAX - ΔIL should not reach the 0mA  
Figure 31. Coil Current Waveform  
Figure 32. Output Application Circuit Diagram  
Adjust so that IINMAX +IL does not reach the rating current value ILR. In addition, become the Discontinuous Condition Mode  
(DCM) when IL reaches 0mA. As for the section which DCM and Continuous Condition Mode (CCM) are replaced by, jitter  
properties turn worse. Adjust the coil so that IINMAX -IL does not reach the 0mA. IL can be obtained by the following equation.  
1
AVDD - VIN  
1
[A] Here, f is the switching frequency.  
IL =  
VIN   
L
AVDD  
f
Set with sufficient margin because the coil value may have the dispersion of 30%. If the coil current exceeds the  
rating current ILR of the coil, it may damage the IC internal element.  
BD81842MUV-M uses the current mode DC/DC converter control and has the optimized design at the coil value. A  
coil inductance (L) of 4.7 uH to 22 uH is recommended from viewpoints of electric power efficiency, response, and  
stability.  
(2) Output Capacity Settings  
For the capacitor to use for the output, select the capacitor which has the larger value in the ripple voltage VPP  
allowance value and the drop voltage allowance value at the time of sudden load change. Output ripple voltage is  
decided by the following equation.  
Here, f is the switching frequency  
and RESR is ESR of output capacitor.  
[V]  
1
VIN  
IL  
VPP  
=
ILMAX RESR +  
(ILMAX -  
)
fCo  
AVDD  
2
Perform setting so that the voltage is within the allowable ripple voltage range.  
For the drop voltage during sudden load change; VDR, please perform the rough calculation by the following equation.  
I  
VDR =  
10 us  
[V]  
Co  
However, 10 s is the rough calculation value of the DC/DC response speed. Please set the capacitance considering  
the sufficient margin so that these two values are within the standard value range.  
(3) Selecting the Input Capacitor  
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required to install at  
the input side. For the reason, the low ESR capacitor is recommended as an input capacitor which has the value  
more than 10 F and less than 100 m. If a capacitor out of this range is selected, the excessive ripple voltage is  
superposed on the input voltage, accordingly it may cause the malfunction of IC.  
However these conditions may vary according to the load current, input voltage, output voltage, inductance and  
switching frequency. Be sure to perform the margin check using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
19/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
(4) Setting RC, CC of the Phase Compensation Circuit  
In the current mode control, since the coil current is controlled, a pole (phase lag) made by the CR filter composed of  
the output capacitor and load resistor will be created in the low frequency range, and a zero (phase lead) by the  
output capacitor and ESR of capacitor will be created in the high frequency range. In this case, to cancel the pole of  
the power amplifier, it is easy to compensate by adding the zero point with CC and RC to the output from the error  
amp as shown in the illustration.  
Open loop gain characteristics  
1
[Hz]  
[Hz]  
Fp =  
O
O
2   R C  
fp(Min)  
A
0
1
fp(Max)  
fz(ESR) =  
SR  
O
2   E C  
Gain  
[dB]  
lOUTMin  
fz(ESR)  
lOUTMax  
Pole at the power amplification stage  
When the output current reduces, the load  
resistance Ro increases and the pole frequency  
lowers.  
0
Phase  
[deg]  
-90  
1
[Hz]at light load  
fp(Min) =  
fz(Max) =  
OMax  
O
2   R  
C  
Error amp phase  
compensation characteristics  
1
[Hz]at heavy load  
OMin  
O
2   R  
C  
A
Gain  
[dB]  
0
Zero at the power amplification stage  
When the output capacitor is set larger, the pole  
frequency lowers but the zero frequency will not  
change. (This is because the capacitor ESR  
becomes 1/2 when the capacitor becomes 2 times.)  
0
Phase  
[deg]  
-90  
1
[Hz]  
fp(Amp.) =  
Figure 33. Gain vs Phase  
c
c
2   R C  
L
AVDD  
Ro  
VIN  
VIN  
Cin  
ESR  
Co  
SW  
COMP  
Rc  
Cc  
GND,PGND  
Figure 34. Application Circuit Diagram  
It is possible to realize the stable feedback loop by canceling the pole fp(Min.), which is created by the output  
capacitor and load resistor, with CR zero compensation of the error amp as shown below.  
fz(Amp.) = fp(Min.)  
1
1
[Hz]  
=
2   Rc Cc  
2   Romax Co  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
20/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
(5) Design of the Feedback Resistor Constant  
Refer to the following equation to set the feedback resistor. As the setting range, 6.8 kto 330 kis recommended.  
If the resistor is set lower than a 6.8 k, it causes the reduction of power efficiency. If it is set more than 330 k,  
the offset voltage becomes larger by the input bias current 0.1 µA(Typ.) in the internal error amplifier.  
Reference voltage 1.25 V  
AVDD  
R_AVD_U  
R_AVD_U + R_AVD_D  
R_AVD_D  
ERR  
AVDD =  
FB  
[V]  
17  
FB  
R_AVD_D  
Figure 35. Application Circuit Diagram  
(6) Positive-side Charge Pump Settings  
The IC incorporates a charge pump controller, thus making it possible to generate stable gate voltage.  
The output voltage is determined by the following formula. As the setting range, 6.8 kto 330 kis recommended.  
If the resistor is set lower than a 6.8k, it causes the reduction of power efficiency. If it is set more than 330 k,  
the offset voltage becomes larger by the input bias current 0.1 µA (Typ.) in the internal error amp.  
SRC  
Reference voltage 1.25 V  
C_SRC_U  
R_SRC_U + R_SRC_D  
R_SRC_D  
R_SRC_U  
R_SRC_D  
SRC =  
FBP  
[V]  
ERR  
10  
10pF to 4700 pF  
FBP  
Figure 36. Application Circuit Diagram  
In order to prevent output voltage overshooting, add capacitor C_SRC_U in parallel with R_SRC_U. The recommended  
capacitance is 10 pF to 4700 pF. But please enough evaluate with the actual model because adjustments in the  
application may be necessary.  
Please meet the following condition about the number of the steps of the charge pump. In addition, confirm with an actual  
model for the last time. Because the loss is increase when a calculation result is the small, please be careful.  
SRC  
Here, n is the steps of charge pump, Vf is the forward voltage of diode.  
1  
n 1 x AVDD - 2n x Vf  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
21/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
(7) Negative-side Charge Pump Settings  
This IC incorporates a charge pump controller for negative voltage, thus making it possible to generate stable gate  
voltage.  
The output voltage is determined by the following formula. As the setting range, 6.8 kto 330 kis recommended. If the  
resistor is set lower than a 6.8 k, it causes the reduction of power efficiency. If it is set more than 330 k, the offset  
voltage becomes larger by the input bias current 0.1 µA (Typ.) in the internal error amp.  
VGL  
0.265V  
4700pF  
10 pF to  
C_VGL_U  
R_VGL_U  
ERR  
11  
FBN  
R_VGL_U  
R_VGL_D  
VGL =  
(FBNVREF)  
+
FBN [V]  
R_VGL_D  
VREF  
12  
Figure 37. Application Circuit Diagram  
In order to prevent output voltage overshooting, insert capacitor C_VGL_U in parallel with R_VGL_U. The recommended  
capacitance is 10 pF to 4700 pF. But please enough evaluate with the actual model because adjustments in the  
application may be necessary.  
Please meet the following condition about the number of the steps of the charge pump. In addition, confirm with an actual  
model for the last time. Because the loss is increase when a calculation result is the small, please be careful.  
- VGL  
Here, n is the steps of charge pump, Vf is the forward voltage of diode.  
1  
- ( n x AVDD - 2n x Vf )  
(8) VCOM Amplifier block  
VCOM Amplifier is a rail-to-rail high slew rate Operational Amplifier which has 0V - AVDD voltage (the 1pin (INP) input  
voltage) as an input and output voltage range.  
When add a capacitor to output, 0.1uF – 10uF is recommended for the reason of stability.  
AVDD  
AVDD  
+
-
1
2
INP  
INN  
3
VCOM  
Figure 38. Application Circuit Diagram  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
22/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
(9) Process of unused function  
When Gate Shading Function is not used, please proceed each pin (SRC, RE, CTL, DLY) as follows.  
VIN  
The SRC, RE, and CTL must be pulled-down  
by a resistor (0-10k) or connected to GND.  
The DLY, please connect capacitor because  
there is the concern such as noises.  
AVDD  
1
AVDD  
24  
23  
22  
21  
20  
19  
1
1
2
18  
INP  
PGND1  
17  
16  
INN  
FB  
COMP  
VCOM  
3
4
VCOM  
15  
14  
AGND1  
RSTIN  
AVDD  
1
5
6
AVDD  
DRP  
AGND2  
VIN  
VIN  
13  
(
)
7
8
9
10  
11  
12  
RST  
SRC  
k  
VGL  
Figure 39. Application Circuit  
When VCOM function is not used, please proceed each pin (INP, INN, VCOM) as follows.  
VIN  
The INP must be pulled-down  
1
by a resistor (0-10k) or connected to GND.  
AVDD  
SRC GSOUT  
24  
23  
22  
21  
20  
19  
1
1
2
18  
INP  
PGND1  
17  
16  
INN  
FB  
COMP  
3
4
VCOM  
15  
14  
AGND1  
RSTIN  
AVDD  
1
5
6
AVDD  
DRP  
AGND2  
VIN  
VIN  
13  
(
)
7
8
9
10  
11  
12  
RST  
CTL  
SRC  
VGL  
Figure 40. Application Circuit  
23/31  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
PCB Layout Guide  
GND Wiring Pattern  
The high current GND (PGND) should be wired thick. To reduce line impedance, the GND lines must be as short and  
thick as possible and uses few via. Therefore design at PCB board four layers or above is recommended. (Please  
use the middle layer as GND shielding and directly connect each GND.) In the case of two layers or less at PCB  
board designs, please enough confirm with the actual model about the heat and the noise with care to a GND wiring.  
Switching-Line Wiring Pattern  
The wiring from switching line (SW pin) of DC/DC converter to inductor and diode must be as short and thick as  
possible. If a wiring is long, ringing by switching increases, and the voltage over the resistance of this IC might be  
generated. Please note that switching line does not vary PCB layer.  
Switching line and wiring easily affected by noise such as feedback line or COMP line must be placed separately.  
Switching noise spread may cause the lack of operation stability. In case the multi-layer PCB board, please note that  
a switching line and a line easily affected by noise or the external components are not adjacent between layers.  
Drawing GND shield line between switching line and these lines easily affected by noise is recommended if these  
lines are placed close.  
Power Supply Voltage Line Wiring Pattern  
For power supply voltage (VIN) and internal reference voltage (VREF), place smooth capacitor nearby IC pin.  
Especially, VIN is a power supply line of internal MOSFET for Boost DC/DC, placing capacitor at distance within 2mm  
from pin is needed. In addition, wire the VIN line by thickness more than 3mm.  
Furthermore, insert the resistance (RC filter formation) on VIN line and become stronger in a power supply change.  
Please note that smooth capacitor does not vary PCB layer.  
The figure 41 shows an application circuit on the basis of the basic PCB layout pattern guideline mentioned above.  
Bold line: High current line  
Blue line(two dots and dashed line): Wiring easily affected by noise  
Red line (dashed line): Noise source line such as switching line  
Figure 41. Application Circuit  
24/31  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Recommended Layout Pattern  
TOP Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
Connect PGND and AGND  
far from noise line.  
PGND  
PGND  
PGND  
VIN  
AGND  
Figure 42. Recommended Layout Pattern  
EMC Layout Guide  
Introduce the plan that can design on the PCB as EMC measures.  
Measures by the board pattern  
Wire AVDD line briefly thickly.  
Wire the current loop of Boost DC/DC briefly thickly.  
Measures by the external component  
Insert a common mode filter or a beads coil in the AVDD line and form the EMC filter.  
Place output capacitor and small capacitor (10pF - 1,000pF) in parallel.  
Insert the snubber circuit in SW pin. (Assumed the efficiency becomes worse)  
VIN  
)  
1
1
20  
19  
18  
B  
17  
Figure 43. Application Circuit  
Figure 44. Current loop  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
25/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
I/O Equivalent Circuit Diagrams  
(Except for 4.AGND1, 14.AGND2, 18.PGND1, 19.PGND2)  
1.INP 2.INN  
3.VCOM 6.DRP 7.DRN  
5.AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AGND1 AGND1  
VIN  
AGND1 AGND2  
AGND2 AGND2  
8.CTL  
9.RST  
13.VIN  
20.SW  
10.FBP 11.FBN 15.RSTIN  
VIN  
VIN  
VIN  
AGND2 AGND2  
AGND2  
VIN  
AGND2  
VIN  
AGND2  
12.VREF  
16.COMP  
VIN  
AGND2 AGND2  
AGND2  
AGND2  
17.FB  
21.RE  
SRC  
VIN  
PGND1, PGND2  
AGND2  
AGND2  
22.GSOUT  
23.SRC  
24.DLY  
VIN  
SRC  
AGND2  
AGND2  
AGND2  
RE  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
26/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Operation Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
27/31  
23. Jun. 2016 Rev.002  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Operational Notes – continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Figure 45. Example of hic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
28/31  
23. Jun. 2016 Rev.002  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Ordering Information  
B D 8 1 8 4 2 M U V  
-
ME2  
Part Number  
Package  
Product Rank  
MUV:VQFN24SV4040  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagrams  
VQFN24SV4040 (TOP VIEW)  
Part Number Marking  
LOT Number  
8 1 8 4 2  
1PIN MARK  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
29/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFN24SV4040  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
30/31  
TSZ2211115001  
Daattaasshheeeett  
BD81842MUV-M  
Revision History  
Date  
Revision  
001  
Changes  
07.Sep.2015  
New Release  
P6 Thermal Resistance : Footprints and Traces  
74.2mm2(Square) 74.2mm x 74.2mm  
P25 Add Recommended Layout Pattern  
23.Jun.2016  
002  
www.rohm.com  
TSZ02201-0313AAF00540-1-2  
23. Jun. 2016 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
31/31  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BD81842MUV-M - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BD81842MUV-M  
VQFN24SV4040  
2500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2500  
Taping  
inquiry  
Yes  
配单直通车
BD81842MUV-ME2产品参数
型号:BD81842MUV-ME2
是否Rohs认证: 符合
生命周期:Active
IHS 制造商:ROHM CO LTD
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.39.00.01
Factory Lead Time:12 weeks
风险等级:1.67
模拟集成电路 - 其他类型:POWER SUPPLY SUPPORT CIRCUIT
峰值回流温度(摄氏度):NOT SPECIFIED
处于峰值回流温度下的最长时间:NOT SPECIFIED
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!