欢迎访问ic37.com |
会员登录 免费注册
发布采购
所在地: 型号: 精确
  • 批量询价
  •  
  • 供应商
  • 型号
  • 数量
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
  •  
  • 北京元坤伟业科技有限公司

         该会员已使用本站17年以上

  • BR93G66F-3GTE2
  • 数量-
  • 厂家-
  • 封装-
  • 批号-
  • -
  • QQ:857273081QQ:857273081 复制
    QQ:1594462451QQ:1594462451 复制
  • 010-62104931、62106431、62104891、62104791 QQ:857273081QQ:1594462451
更多
  • BR93G66F-3GTE2图
  • 深圳市芯鹏泰科技有限公司

     该会员已使用本站8年以上
  • BR93G66F-3GTE2
  • 数量7536 
  • 厂家Rohm Semiconductor 
  • 封装8-SOP 
  • 批号23+ 
  • 存储器IC原装现货
  • QQ:892152356QQ:892152356 复制
  • 0755-82777852 QQ:892152356
  • BR93G66F-3GTE2图
  • 现代芯城(深圳)科技有限公司

     该会员已使用本站15年以上
  • BR93G66F-3GTE2
  • 数量61000 
  • 厂家一级代理 
  • 封装一级代理 
  • 批号一级代理 
  • 一级代理正品采购
  • QQ:3007226851QQ:3007226851 复制
    QQ:3007226849QQ:3007226849 复制
  • 0755-82542579 QQ:3007226851QQ:3007226849
  • BR93G66F-3GTE2图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • BR93G66F-3GTE2
  • 数量8500 
  • 厂家ROHM(罗姆) 
  • 封装SOP-8 
  • 批号新年份 
  • 羿芯诚只做原装,原厂渠道,价格优势可谈!
  • QQ:2853992132QQ:2853992132 复制
  • 0755-82570683 QQ:2853992132
  • BR93G66F-3GTE2图
  • 深圳市惊羽科技有限公司

     该会员已使用本站11年以上
  • BR93G66F-3GTE2
  • 数量36218 
  • 厂家ROHM-罗姆 
  • 封装SOP-8.贴片 
  • 批号▉▉:2年内 
  • ▉▉¥1.9元一有问必回一有长期订货一备货HK仓库
  • QQ:43871025QQ:43871025 复制
  • 131-4700-5145---Q-微-恭-候---有-问-秒-回 QQ:43871025
  • BR93G66F-3GTE2图
  • 深圳市芯福林电子有限公司

     该会员已使用本站15年以上
  • BR93G66F-3GTE2
  • 数量65000 
  • 厂家ROHM(罗姆) 
  • 封装SOP-8 
  • 批号23+ 
  • 真实库存全新原装正品!代理此型号
  • QQ:2881495753QQ:2881495753 复制
  • 0755-23605827 QQ:2881495753
  • BR93G66F-3GTE2图
  • 深圳市羿芯诚电子有限公司

     该会员已使用本站7年以上
  • BR93G66F-3GTE2
  • 数量8500 
  • 厂家原厂品牌 
  • 封装原厂封装 
  • 批号新年份 
  • 羿芯诚只做原装长期供,支持实单
  • QQ:2880123150QQ:2880123150 复制
  • 0755-82570600 QQ:2880123150
  • BR93G66F-3GTE2图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • BR93G66F-3GTE2
  • 数量6500000 
  • 厂家罗姆 
  • 封装原厂原装 
  • 批号22+ 
  • 万三科技 秉承原装 实单可议
  • QQ:3008961396QQ:3008961396 复制
  • 0755-21008751 QQ:3008961396
  • BR93G66F-3GTE2图
  • 深圳市惠诺德电子有限公司

     该会员已使用本站7年以上
  • BR93G66F-3GTE2
  • 数量29500 
  • 厂家Rohm Semiconductor 
  • 封装IC EEPROM 4KBIT SPI 3MHZ 8SOP 
  • 批号21+ 
  • 只做原装现货代理
  • QQ:1211267741QQ:1211267741 复制
    QQ:1034782288QQ:1034782288 复制
  • 159-7688-9073 QQ:1211267741QQ:1034782288
  • BR93G66F-3GTE2图
  • 深圳市鹏和科技有限公司

     该会员已使用本站16年以上
  • BR93G66F-3GTE2
  • 数量4000 
  • 厂家ROHM 
  • 封装ROHM 
  • 批号22+ 
  • 只做原装现货 支持实单
  • QQ:604309946QQ:604309946 复制
    QQ:1261585635QQ:1261585635 复制
  • 755-83990319 QQ:604309946QQ:1261585635
  • BR93G66F-3GTE2图
  • 万三科技(深圳)有限公司

     该会员已使用本站2年以上
  • BR93G66F-3GTE2
  • 数量660000 
  • 厂家ROHM(罗姆) 
  • 封装SOP-8-4.0mm 
  • 批号23+ 
  • 支持实单/只做原装
  • QQ:3008961398QQ:3008961398 复制
  • 0755-21006672 QQ:3008961398
  • BR93G66F-3GTE2图
  • 深圳市宇川湘科技有限公司

     该会员已使用本站6年以上
  • BR93G66F-3GTE2
  • 数量23000 
  • 厂家原厂 
  • 封装8-SOP 
  • 批号23+ 
  • 原装正品现货,郑重承诺只做原装!
  • QQ:2885348305QQ:2885348305 复制
    QQ:2885348305QQ:2885348305 复制
  • 0755-84534256 QQ:2885348305QQ:2885348305
  • BR93G66F-3GTE2图
  • 深圳市力拓辉电子有限公司

     该会员已使用本站13年以上
  • BR93G66F-3GTE2
  • 数量
  • 厂家ROHM 
  • 封装SOP8 
  • 批号21+ 
  • 全新原装正品鄙视假货
  • QQ:2881140004QQ:2881140004 复制
    QQ:2881140005QQ:2881140005 复制
  • 755-82787180 QQ:2881140004QQ:2881140005
  • BR93G66F-3GTE2图
  • 深圳市博正芯科技有限公司

     该会员已使用本站6年以上
  • BR93G66F-3GTE2
  • 数量11200 
  • 厂家Rohm Semiconductor 
  • 封装原装 
  • 批号21+ 
  • ★★正品专卖,进口原装深圳现货★★
  • QQ:639834857QQ:639834857 复制
    QQ:1487625604QQ:1487625604 复制
  • 0755-82545278 QQ:639834857QQ:1487625604
  • BR93G66F-3GTE2图
  • 深圳市一线半导体有限公司

     该会员已使用本站15年以上
  • BR93G66F-3GTE2
  • 数量7900 
  • 厂家Rohm Semiconductor 
  • 封装 
  • 批号 
  • 全新原装部分现货其他订货
  • QQ:2881493920QQ:2881493920 复制
    QQ:2881493921QQ:2881493921 复制
  • 0755-88608801多线 QQ:2881493920QQ:2881493921
  • BR93G66F-3GTE2图
  • 深圳市科雨电子有限公司

     该会员已使用本站9年以上
  • BR93G66F-3GTE2
  • 数量9854 
  • 厂家ROHM 
  • 封装SOP-8 
  • 批号24+ 
  • ★体验愉快问购元件!!就找我吧!单价:3元
  • QQ:97671956QQ:97671956 复制
  • 171-4729-1886(微信同号) QQ:97671956

产品型号BR93G66F-3GTE2的概述

BR93G66F-3GTE2芯片概述 BR93G66F-3GTE2是一款高性能、低功耗的EEPROM(电可擦可编程只读存储器),主要用于计算机、消费电子和工业设备中。该芯片具有较大的存储容量和较低的电压工作特性,使其适合在多种应用场合中使用。BR93G66F-3GTE2由日本的BR社(Bridgelux)生产,是该公司在非易失性存储器领域的重要产品。 详细参数 BR93G66F-3GTE2的主要技术参数如下: 1. 存储容量:66 Kbit(8 K字节) 2. 接口类型:SPI(串行外设接口) 3. 工作电压:2.5V – 5.5V 4. 工作温度范围:-40°C 至 +85°C 5. 写入周期:通常为5ms(取决于写入的数据量) 6. 擦除周期:设备可以在写入时实现按字节擦除 7. 数据保持时间:≥ 20年(在25°C时) 8. 写入次数:约1,000,000次 9. 封装形式:8引...

产品型号BR93G66F-3GTE2的Datasheet PDF文件预览

Datasheet  
Serial EEPROM series Standard EEPROM  
MicroWire BUS EEPROM (3-Wire)  
BR93G66-3  
General Description  
BR93G66-3 is serial EEPROM of Serial 3-Line Interface Method.  
They are dual organization (by 16bit or 8bit) and it is selected by the input of ORG PIN.  
Features  
Packages W(Typ) x D(Typ)x H(Max)  
3-Line Communications of chip select, serial clock,  
serial data input / output (the case where input and  
output are shared)  
Operations available at High Speed 3MHz clock  
(4.5V to 5.5V)  
High Speed Write available (Write Time 5ms Max)  
DIP-T8  
9.30mm x 6.50mm x 7.10mm  
TSSOP-B8  
3.00mm x 6.40mm x 1.20mm  
Same package and pin configuration from 1Kbit to  
16Kbit  
1.7V to 5.5V Single Power Source Operation  
Address Auto Increment Function at Read  
Operation  
SOP8  
TSSOP-B8J  
3.00mm x 4.90mm x 1.10mm  
5.00mm x 6.20mm x 1.71mm  
Prevention of Write Error  
» Write Prohibition at Power On  
» Write Prohibition by Command Code  
» Prevention of Write Error at Low Voltage  
Self-Timed Programming Cycle  
Program Condition Display by READY / BUSY  
Dual Organization: by 16 bit (X16) or 8 bit (X8)  
Compact Package  
SOP- J8  
4.90mm x 6.00mm x 1.65mm  
MSOP8  
2.90mm x 4.00mm x 0.90mm  
SOP8 SOP-J8 SSOP-B8 TSSOP-B8 MSOP8  
TSSOP-B8J DIP-T8 VSON008X2030  
More than 40 years data retention  
More than 1 million Write Cycles  
Initial Delivery State all addresses FFFFh (X16) or  
FFh (X8)  
SSOP-B8  
3.00mm x 6.40mm x 1.35mm  
VSON008X2030  
2.00mm x 3.00mm x 0.60mm  
BR93G66-3  
Power Source  
Voltage  
VSON008  
X2030  
DIP-T8(1) SOP8 SOP-J8 SSOP-B8 TSSOP-B8 TSSOP-B8J MSOP8  
Capacity  
Bit Format  
Type  
4Kbit  
256×16 or 512×8 BR93G66-3  
1.7V to 5.5V  
(1) DIP-T8 is not halogen free package  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
1/36  
Daattaasshheeeett  
BR93G66-3  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
V
Remark  
Supply Voltage  
Vcc  
-0.3 to +6.5  
800 (DIP-T8)  
Derate by 8.0mW/°C when operating above Ta=25°C  
Derate by 4.5mW/°C when operating above Ta=25°C  
Derate by 4.5mW/°C when operating above Ta=25°C  
Derate by 3.0mW/°C when operating above Ta=25°C  
Derate by 3.3mW/°C when operating above Ta=25°C  
Derate by 3.1mW/°C when operating above Ta=25°C  
Derate by 3.1mW/°C when operating above Ta=25°C  
Derate by 3.0mW/°C when operating above Ta=25°C  
450 (SOP8)  
450 (SOP-J8)  
300 (SSOP-B8)  
330 (TSSOP-B8)  
310 (TSSOP-B8J)  
310 (MSOP8)  
Permissible  
Dissipation  
Pd  
mW  
300 (VSON008X2030)  
Storage  
Tstg  
Topr  
65 to +150  
40 to +85  
Temperature  
Operating  
Temperature  
The Max value of Input Voltage/Output Voltage is not over 6.5V.  
When the pulse width is 50ns or less, the Min value of Input  
Voltage/Output Voltage is not under -0.8V.  
Input Voltage/  
Output Voltage  
-0.3 to Vcc+1.0  
150  
V
Junction  
Temperature  
Tjmax  
Junction temperature at the storage condition  
Memory Cell Characteristics (VCC=1.7V to 5.5V)  
Limit  
Parameter  
Unit  
Conditions  
Min  
1,000,000  
40  
Typ  
Max  
Write Cycles (1)  
-
-
-
-
Times  
Years  
Ta=25℃  
Ta=25℃  
Data Retention (1)  
Initial data in all addresses are either FFFFh(X16) or FFh(X8) upon delivery.  
(1) Not 100% TESTED  
Recommended Operating Ratings  
Parameter  
Symbol  
Vcc  
Limit  
Unit  
V
Supply Voltage  
Input Voltage  
1.7 to 5.5  
0 to Vcc  
VIN  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
2/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
DC Characteristics (Unless otherwise specified, Vcc=1.7V to 5.5V, Ta=-40to +85)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
Input Low Voltage  
VIL  
VIH  
-0.3(1)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.3Vcc  
Vcc+1.0  
0.4  
V
V
1.7VVcc5.5V  
Input High Voltage  
0.7Vcc  
1.7VVcc5.5V  
IOL=2.1mA, 2.7VVc5.5V  
IOL=100μA  
Output Low Voltage 1  
Output Low Voltage 2  
Output High Voltage 1  
Output High Voltage 2  
Input Leakage Current1  
Input Leakage Current2  
Output Leakage Current  
VOL1  
VOL2  
VOH1  
VOH2  
ILI1  
0
V
0
0.2  
V
2.4  
Vcc  
Vcc  
+1  
V
IOH=-0.4mA, 2.7VVcc5.5V  
IOH=-100μA  
Vcc-0.2  
V
-1  
-1  
-1  
-
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
VIN=0V to Vcc(CS,SK,DI)  
VIN=0V to Vcc(ORG)  
VOUT=0V to Vcc, CS=0V  
ILI2  
+3  
ILO  
+1  
Vcc=1.7V, fSK=1MHz, tE/W=5ms  
(WRITE)  
1.0  
ICC1  
ICC2  
ICC3  
Vcc=5.5V ,fSK=3MHz, tE/W=5ms  
(WRITE)  
-
2.0  
-
0.5  
fSK=1MHz (READ)  
fSK=3MHz (READ)  
Supply Current  
-
1.0  
Vcc=2.5V, fSK=1MHz  
tE/W=5ms (WRAL, ERAL)  
-
2.0  
Vcc=5.5V ,fSK=3MHz  
-
3.0  
t
E/W=5ms (WRAL, ERAL)  
ISB1  
ISB2  
-
2.0  
CS=0V, ORG=Vcc or OPEN  
CS=0V, ORG=0V  
Standby Current  
-
15  
(1) When the pulse width is 50ns or less, the Min value of VIL is admissible to -0.8V.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
3/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
AC Characteristics (Unless otherwise specified, Vcc=1.7V to 2.5V, Ta=-40to +85)  
Limit  
Parameter  
Symbol  
Unit  
Min  
-
Typ  
Max  
SK Frequency  
SK High Time  
SK Low Time  
CS Low Time  
CS Setup Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
fSK  
tSKH  
tSKL  
tCS  
-
-
-
-
-
-
-
-
-
-
-
-
-
1
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
250  
250  
250  
200  
100  
0
-
-
-
-
tCSS  
tDIS  
tCSH  
tDIH  
tPD1  
tPD0  
tSV  
-
-
100  
-
-
Data “1” Output Delay  
400  
400  
400  
200  
5
Data “0” Output Delay  
-
Time from CS to Output Establishment  
Time from CS to High-Z  
Write Cycle Time  
-
tDF  
-
tE/W  
-
(Unless otherwise specified, Vcc=2.5V to 4.5V, Ta=-40to +85)  
Limit  
Parameter  
Symbol  
Unit  
Min  
-
Typ  
Max  
SK Frequency  
SK High Time  
SK Low Time  
CS Low Time  
CS Setup Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
fSK  
tSKH  
tSKL  
tCS  
-
-
-
-
-
-
-
-
-
-
-
-
-
2
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
230  
200  
200  
50  
100  
0
-
-
-
-
tCSS  
tDIS  
tCSH  
tDIH  
tPD1  
tPD0  
tSV  
-
-
100  
-
-
Data “1” Output Delay  
200  
200  
150  
100  
5
Data “0” Output Delay  
-
Time from CS to Output Establishment  
Time from CS to High-Z  
Write Cycle Time  
-
tDF  
-
tE/W  
-
(Unless otherwise specified, Vcc=4.5V to 5.5V, Ta=-40to +85)  
Limit  
Parameter  
Symbol  
Unit  
Min  
-
Typ  
Max  
SK Frequency  
SK High Time  
SK Low Time  
CS Low Time  
CS Setup Time  
DI Setup Time  
CS Hold Time  
DI Hold Time  
fSK  
tSKH  
tSKL  
tCS  
-
-
-
-
-
-
-
-
-
-
-
-
-
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
100  
100  
200  
50  
50  
0
-
-
-
-
tCSS  
tDIS  
tCSH  
tDIH  
tPD1  
tPD0  
tSV  
-
-
50  
-
-
Data “1” Output Delay  
200  
200  
150  
100  
5
Data “0” Output Delay  
-
Time from CS to Output Establishment  
Time from CS to High-Z  
Write Cycle Time  
-
tDF  
-
tE/W  
-
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
4/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Serial Input / Output Timing  
1/ fSK  
CS  
SK  
tCS S  
tSKH  
tSKL  
tCSH  
tDIS  
tD I H  
DI  
tPD1  
tPD0  
DO (REA D)  
t DF  
tSV  
DO(WRITE)  
STATUS VALID  
Figure 1. Serial Input / Output Timing  
1. Data is taken by DI sync with the rise of SK.  
2. At read operation, data is output from DO in sync with the rise of SK.  
3. The STATUS signal at write (READY / BUSY) is output after tCS from the fall of CS after write command input, at the area  
DO where CS is high, and valid until the next command start bit is input. And, while CS is low, DO becomes High-Z.  
4. After completion of each mode execution, set CS low once for internal circuit reset, and execute the following operation  
mode.  
5. 1/fSK is the SK clock cycle, even if fSK is maximum, the SK clock cycle can’t be tSKH(Min)+tSKL(Min)  
6. For “Write cycle time tE/W”, please see Figure 36,37,39,40.  
7. For “CS low time tCS”, please see Figure 36,37,39,40.  
Block Diagram  
Power Source Voltage  
CS  
SK  
Command Decode  
Control  
Clock Generation  
Write  
High Voltage Occurrence  
Prohibition  
Address  
Address  
Decoder  
Command  
Register  
DI  
or  
Buffer  
8bit  
9bit  
or  
8bit  
9bit  
4,096 bit  
EEPROM  
Data  
R/W  
ORG  
DO  
16bit/8bit  
16bit/8bit  
Register  
Amplifier  
Dummy Bit  
Figure 2. Block Diagram  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
5/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Pin Configuration  
(TOP VIEW)  
VCC  
DU  
ORG  
GND  
BR93G66-3  
BR93G66F-3  
:DIP-T8  
:SOP8  
BR93G66FJ-3  
BR93G66FV-3  
BR93G66FVT-3  
BR93G66FVJ-3  
BR93G66FVM-3  
BR93G66NUX-3  
:SOP-J8  
:SSOP-B8  
:TSSOP-B8  
:TSSOP-B8J  
:MSOP8  
:VSON008X2030  
CS  
SK  
DI  
DO  
Figure 3. Pin Configuration  
Pin Description  
Pin Name  
I / O  
Input  
Input  
Input  
Description  
CS  
SK  
DI  
Chip select input  
Serial clock input  
Start bit, ope code, address, and serial data input  
―――――  
DO  
GND  
ORG  
DU  
Output  
Serial data output, READY / BUSY STATUS display output  
-
All input / output reference voltage, 0V  
Organization select, X16mode or X8 mode(1)  
Don’t use terminal (2)  
Input  
-
-
VCC  
Supply voltage  
(1) The memory array organization may be divided into either X8 or X16 which is selected by pin ORG.  
When ORG is OPEN or connected to VCC, X16 organization is selected.  
When ORG is connected to ground, X8 organization is selected.  
(2) Terminals not used may be set to any of high, low, and OPEN  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
6/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Typical Performance Curves  
6
6
5
4
3
2
1
0
Ta=-40℃  
5
Ta= 25℃  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
Ta= 85℃  
4
3
SPEC  
2
SPEC  
1
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 4. Input High Voltage vs Supply Voltage  
(CS,SK,DI,ORG)  
Figure 5. Input Low Voltage vs Supply Voltage  
(CS,SK,DI,ORG)  
1
1
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
SPEC  
SPEC  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT LOW CURRENT : IOL(mA)  
OUTPUT LOW CURRENT:IOL(mA)  
Figure 6. Output Low Voltage1 vs Output Low Current  
(VCC=2.7V)  
Figure 7. Output Low Voltage2 vs Output Low Current  
(VCC=1.7V)  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
7/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
5
4
3
2
1
0
Ta=-40℃  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
Ta= 25℃  
Ta= 85℃  
4
3
SPEC  
2
SPEC  
1
0
0
0.4  
0.8  
1.2  
1.6  
0
0.4  
0.8  
1.2  
1.6  
OUTPUT HIGH CURRENT: IOH(mA)  
OUTPUT HIGH CURRENT: IOH(mA)  
Figure 9. Output High Voltage2 vs Output High Current  
(VCC=1.7V)  
Figure 8. Output High Voltage1 vs Output High Current  
(VCC=2.7V)  
1.2  
5
4
3
2
1
0
SPEC  
1
0.8  
Ta=-40℃  
SPEC  
Ta= 25℃  
Ta= 85℃  
0.6  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
0.4  
0.2  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLYVOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 11. Input Leakage Curren2t vs Supply Voltage  
(ORG)  
Figure 10. Input Leakage Current1 vs Supply Voltage  
(CS,SK,DI)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
8/36  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
1.2  
2.5  
2
SPEC  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
1
0.8  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
1.5  
1
0.6  
SPEC  
0.4  
0.2  
0
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 13. Supply Current (WRITE) vs Supply Voltage  
( fSK=1MHz)  
Figure 12. Output Leakage Current (DO)  
vs Supply Voltage  
2.5  
5
4
3
2
1
0
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
2
1.5  
1
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
SPEC  
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 15. Supply Current (READ) vs Supply Voltage  
(fSK=1MHz)  
Figure 14. Supply Current (WRITE) vs Supply Voltage  
(fSK=3MHz)  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
9/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
2.5  
2.5  
2
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
2
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
1.5  
1
1.5  
SPEC  
1
0.5  
0
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 16. Supply Current (READ) vs Supply Voltage  
(fSK=3MHz)  
Figure 17. Supply Current (WRAL) vs Supply Voltage  
(fSK=1MHz)  
5
2.5  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
4
2
1.5  
1
SPEC  
3
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
2
1
0
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 19. Standby Current vs Supply Voltage  
(CS=0V, ORG=VCC or OPEN)  
Figure 18. Supply Current (WRAL) vs Supply Voltage  
(fSK=3MHz)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
10/36  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
20  
1000  
100  
10  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
15  
Ta=-40℃  
Ta= 25℃  
SPEC  
10  
Ta= 85℃  
SPEC  
SPEC  
1
5
0
0.1  
0.01  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 21. SK Frequency vs Supply Voltage  
Figure 20. Standby Current vs Supply Voltage  
(CS=0V, ORG=0V)  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
SPEC  
SPEC  
SPEC  
SPEC  
SPEC  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLYVOLTAGE: Vcc(V)  
Figure 22. SK High Time vs Supply  
V lt  
Figure 23. SK Low Time vs Supply Voltage  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
11/36  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
50  
0
500  
SPEC  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
400  
-50  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
300  
-100  
-150  
-200  
-250  
-300  
SPEC  
SPEC  
200  
100  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLYVOLTAGE: Vcc(V)  
SUPPLYVOLTAGE: Vcc(V)  
Figure 24. CS Low Time vs Supply Voltage  
Figure 25. CS Hold Time vs Supply Voltage  
150  
100  
50  
300  
250  
200  
150  
100  
50  
SPEC  
SPEC  
Ta=-40℃  
SPEC  
Ta= 25℃  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
Ta= 85℃  
0
SPEC  
-50  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 27. DI Setup Time vs Supply Voltage  
Figure 26. CS Setup Time vs Supply Voltage  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
12/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
150  
1000  
800  
600  
400  
200  
0
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
100  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
50  
0
SPEC  
SPEC  
-50  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLYVOLTAGE: Vcc(V)  
Figure 28. DI Hold Time vs Supply Voltage  
Figure 29. Data "0" Output Delay vs  
Supply Voltage  
1000  
800  
600  
400  
200  
0
500  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
400  
300  
200  
100  
0
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
SPEC  
SPEC  
SPEC  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLYVOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 30. Data "1" Output Delay  
vs Supply Voltage  
Figure 31. Time from CS to output establishment  
vs Supply Voltage  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
13/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Typical Performance CurvesContinued  
250  
6
5
4
3
2
1
0
SPEC  
SPEC  
200  
Ta=-40℃  
Ta= 25℃  
150  
Ta= 85℃  
SPEC  
100  
Ta=-40℃  
Ta= 25℃  
Ta= 85℃  
50  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
SUPPLY VOLTAGE: Vcc(V)  
SUPPLY VOLTAGE: Vcc(V)  
Figure 33. Write Cycle Time vs  
Supply Voltage  
Figure 32. Time from CS to High-Z vs  
Supply Voltage  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
14/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Description of Operations  
Communications of the MicroWire BUS are carried out by SK (serial clock), DI (serial data input),DO (serial data output) ,and  
CS (chip select) for device selection.  
When connecting one EEPROM to a microcontroller, connect it as shown in Figure 34(a) or Figure 34(b). And when using  
the input and output common I/O port of the microcontroller, connect DI and DO of EEPROM via a resistor as shown in  
Figure 34(b) (Refer to pages 21, 22.), wherein connection by 3 lines is possible.  
In the case of connecting multiple EEPROM devices, refer to Figure 34 (c).  
Micro-  
controller  
Micro-  
controller  
BR93GXX  
BR93GXX  
Micro-  
controller  
CS  
CS3  
CS2  
CS1  
SK  
CS  
SK  
DO  
DI  
CS  
SK  
DI  
CS  
SK  
DI  
SK  
DO  
DI  
DI/O  
DO  
DO  
Device 2  
(c). Connection Example of Multiple Devices  
Device 1  
Device 3  
(a). Connection by 4 Lines  
(b). Connection by 3 Lines  
Figure 34. Connection Method with Microcontroller  
Communications on MicroWire BUS is started by the first “1” input after the rise of CS. This input is called the “Start Bit”.  
After the start bit, the Ope code, address and data are then inputted sequentially. Address and data are all inputted with MSB  
first.  
“0” inputs from the rise of CS to the start bit input are all ignored. Therefore, when there is limitation in the bit width of PIO of  
the microcontroller, input “0” before the start bit input, to control the bit width.  
Command Mode  
ORG=H or OPEN  
Address  
Start  
Bit  
Ope  
Code  
Data  
Command  
Required Clocks(n)  
BR93G66-3  
MSB of Address(Am) is A7  
MSB of Data(Dx) is D15  
Read (READ) (1)  
1
10  
A7,A6,A5,A4,A3,A2,A1,A0  
D15 to D0(READ DATA)  
BR93G66-3:n=27  
BR93G66-3:n=11  
Write Enable (WEN)  
Write Disable (WDS)  
Write (WRITE) (2)  
Write All (WRAL) (2)  
Erase (ERASE)  
1
1
1
1
1
1
00  
00  
01  
00  
11  
00  
1
0
1
0
* * * * * *  
* * * * * *  
A7,A6,A5,A4,A3,A2,A1,A0  
* * * * * *  
A7,A6,A5,A4,A3,A2,A1,A0  
* * * * * *  
D15 to D0(WRITE DATA)  
D15 to D0(WRITE DATA)  
BR93G66-3:n=27  
BR93G66-3:n=11  
0
1
Erase All (ERAL)  
1
0
ORG=L  
Address  
Start  
Bit  
Ope  
Code  
Data  
Command  
Required Clocks(n)  
BR93G66-3  
MSB of Address(Am) is A8  
MSB of Data(Dx) is D7  
Read (READ) (1)  
1
1
1
1
1
1
1
10  
00  
00  
01  
00  
11  
00  
A8,A7,A6,A5,A4,A3,A2,A1,A0  
D7 to D0(READ DATA)  
BR93G66-3:n=20  
BR93G66-3:n=12  
Write Enable (WEN)  
Write Disable (WDS)  
Write (WRITE) (2)  
Write All (WRAL) (2)  
Erase (ERASE)  
1
0
1
0
* * * * * * *  
* * * * * * *  
A8,A7,A6,A5,A4,A3,A2,A1,A0  
* * * * * * *  
A8,A7,A6,A5,A4,A3,A2,A1,A0  
* * * * * * *  
D7 to D0(WRITE DATA)  
D7 to D0(WRITE DATA)  
BR93G66-3:n=20  
BR93G66-3:n=12  
0
1
Erase All (ERAL)  
1
0
Input the address and the data in MSB first manners.  
As for *, input either “1” or “0” .  
*Start bit  
Acceptance of all the commands of this IC starts at recognition of the start bit.  
The start bit means the first “1” input after the rise of CS.  
(1) As for read, by continuous SK clock input after setting the read command, data output of the set address starts, and address data in significant order are  
sequentially output continuously. (Auto increment function)  
(2) For write or write all commands, an internal erase or erase all is included and no separate erase or erase all is needed before write or write all command.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
15/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Timing Chart  
1. Read Cycle (READ)  
~  
~  
~  
~  
~  
CS  
SK  
~  
~  
(1)  
1
n+1  
n
2
4
(2)  
Am: MSB of address  
Dx: MSB of data  
n: required clocks  
DI  
A1  
A0  
Am  
1
1
0
~  
~  
~  
~  
~  
~  
(2)  
Dx Dx-1  
D0  
0
Dx Dx-1  
D1  
DO  
High-Z  
(1) Start bit  
After the rising edge of CS, the first data “1” input will be recognized as the start bit and the following operation starts. All “0s” preceding the start bit  
are ignored. This applies to all command that will be discussed later.  
(2) For the meaning of Am,Dx,n,please see tables of command mode in Page15. For example, ORG=H or OPEN,Am=A7,Dx=D15,n=27.  
Figure 35. Read Cycle  
(1) When the READ command is received, data is clocked out to DO synchronously with the rising edge of SK. A “0”  
(dummy bit) is output first in sync with the address bit A0. Then follows the 16-bit data from the selected address  
MSB first.  
This IC has an Address Auto Increment function that is available only for READ command. After the first 16-bit data  
has been output to DO and CS is kept High, a continuous SK clock input causes the address to increment  
automatically and the IC outputs a stream of successive data from consecutive addresses.  
2. Write Cycle (WRITE)  
~  
~  
~  
~  
~  
tCS  
CS  
SK  
DI  
STATUS  
~  
n
Am: MSB of address  
Dx: MSB of data  
n: required clocks  
1
2
4
~  
~  
~  
~  
~  
~  
Dx Dx-1  
D1  
A1  
A0  
D0  
Am  
1
0
1
tSV  
READY  
DO  
BUSY  
~  
High-Z  
tE/W  
For the meaning of Am,Dx,n, please see tables of command mode in Page15.  
Figure 36. Write Cycle  
(1) In this command, input 16bit or 8bit data are written to designated addresses (Am to A0). The actual write starts by  
the fall of CS of D0 taken SK clock.  
When STATUS is not detected (CS=low fixed),make sure Max 5ms time is in comforming with tE/W  
.
When STATUS is detected (CS=high), all commands are not accepted for areas where low (BUSY) is output from  
DO, therefore, do not input any command.  
3. Write All Cycle (WRAL)  
~  
~  
~  
~  
tCS  
CS  
SK  
DI  
STATUS  
~  
~  
~  
n
1
2
0
5
~  
~  
Dx: MSB of data  
n: required clocks  
~  
~  
~  
Dx Dx-1  
D1  
D0  
1
0
0
1
~  
~  
tSV  
BUSY  
READY  
DO  
~  
High-Z  
tE/W  
For the meaning of Dx,n,please see tables of command mode in Page15.  
Figure 37. Write All Cycle  
(1) In this command, input 16bit or 8bit data is written simultaneously to all adresses. Data is not written continuously  
per one word but is written in bulk, the write time is only Max 5ms in conformity with tE/W  
In WRAL, STATUS can be detected in the same manner as in WRITE command.  
.
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
16/36  
Daattaasshheeeett  
BR93G66-3  
4. Write Enable (WEN) / Disable (WDS) Cycle  
~  
CS  
SK  
1
2
0
3
4
5
6
7
8
n
~  
n: required clocks  
ENABLE=1  
DISABLE=0  
1
0
~  
~  
DI  
1
0
DO  
High-Z  
For the meaning of n,please see tables of command mode in Page15.  
Figure 38. Write Enable (WEN) / Disable (WDS) Cycle  
(1) At power on, this IC is in write disable status by the internal RESET circuit. Before executing the write command, it  
is necessary to execute the write enable command. And, once this command is executed, it is valid unitl the write  
disable command is executed or the power is turned off. However, the read command is valid irrespective of write  
enable / diable command. Input to SK after 6 clocks of this command is available by either “1” or “0”, but be sure to  
input it.  
(2) When the write enable command is executed after power on, write enable status gets in. When the write disable  
command is executed then, the IC gets in write disable status as same as at power on, and then the write command  
is canceled thereafter in software manner. However, the read command is executable. In write enable status, even  
when the write command is input by fault, write is started. To prevent such error, it is recommended to execute the  
write disable command after completion of write.  
5. Erase Cycle (ERASE)  
~  
~  
STATUS  
tCS  
CS  
SK  
DI  
~  
~  
~  
~  
~  
n
1
2
4
~  
Am: MSB of address  
n: required clocks  
~  
A1  
A3  
A2  
A0  
Am  
1
1
1
~  
~  
~  
~  
~  
tSV  
BUSY  
READY  
DO  
~  
High-Z  
tE/W  
For the meaning of Am,n,please see tables of command mode in Page15.  
Figure 39. Erase Cycle  
(1) In this command, data of the designated address is made into “1”. The data of the designated address becomes  
“FFFFh or FFh”.  
Actual ERASE starts at the fall of CS after the fall of A0 taken SK clock.  
In ERASE, STATUS can be detected in the same manner as in WRITE command.  
6. Erase All Cycle (ERAL)  
~  
tCS  
~  
CS  
SK  
DI  
STATUS  
~  
~  
~  
n
1
2
4
~  
~  
~  
n: required clocks  
0
1
0
0
1
~  
~  
~  
tSV  
READY  
DO  
BUSY  
~  
High-Z  
tE/W  
For the meaning of n,please see tables of command mode in Page15.  
Figure 40. Erase All Cycle  
(1) In this command, data of all addresses is made into “1”. Data of all addresses becomes ”FFFFh or FFh”.  
Actual ERASE starts at the fall of CS after the falll of the n-th clock from the start bit input.  
In ERAL, STATUS can be detected in the same manner as in WRAL command.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
17/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
(1) For the meaning of m,x, please see tables of Command Mode in Page15  
Clock Rise of D0 taken  
BR93G66-3  
Application  
1. Method to cancel each command  
(1) READ  
Start bit  
Ope code  
Address(1)  
Data (1)  
1bit  
2bit  
m+1bit  
x+1bit  
Cancel is available in all areas in read mode.  
Method to cancelcancel by CS=low  
Figure 41. READ Cancel Available Timing  
(2) WRITE,WRAL  
n-1  
n
n+1  
n+2  
SK  
DI  
A1  
D0  
a
D1  
c
b
Enlarged figure  
(1)  
Start bit  
Ope code  
Address  
Data  
x+1bit  
tE/W  
(1) For the meaning of m,n,x,  
please see tables of Command Mode in Page15  
1bit  
2bit  
m+1bit  
a
c
b
aFrom start bit to the clock rise of D0 taken  
Cancel by CS=low  
bWhen taken after the clock rise of D0.  
Cancellation will be no longer possible.  
Note 1) If Vcc is turned OFF in this area, designated address data is not  
guaranteed, therefore, it is recommended to execute WRITE  
once again.  
cn+1 clock rise and after  
Cancel by CS=low  
However, when write is started in b area (CS is ended), cancellation is  
not available by any means.  
And when SK clock is output continuously cancel function is not  
available.  
Note 2) If CS is started at the same timing as that of the SK rise,  
write execution/cancel becomes uncertain. Therefore, it is  
recommended to set CS to low in SK=low area.  
As for SK rise, recommended timing is tCSS/tCSH or higher.  
Figure 42. WRITE, WRAL Cancel Available Timing  
(3) ERASE, ERAL  
Clock rise of A0 taken  
n-1  
n
n+2  
n+1  
SK  
DI  
A1  
a
A0  
b
c
Enlarged figure  
(1)  
b
Start bit  
Ope code  
Address  
tE/W  
(1) For the meaning of m,n,please see tables of Command Mode in Page15  
1bit  
2bit  
m+1bit  
a
c
aFrom start bit to clock rise of A0 taken  
Cancel by CS=low  
bClock rise of A0 taken  
Note 1) If Vcc is turned OFF in this area, designated address data is not  
guaranteed, therefore, it is recommended to execute WRITE  
once again.  
Cancellation is not available by any means.  
cn+1 clock rise and after  
Cancel by CS=low  
However, when write is started in b area (CS is ended), cancellation is not  
available by any means.  
Note 2) If CS is started at the same timing as that of the SK rise,  
write execution/cancel becomes unstable, therefore, it is  
recommended to fall in SK=low area.  
And when SK clock is output continuously cancel function is not available.  
As for SK rise, recommended timing is tCSS/tCSH or higher.  
Figure 43. ERASE, ERAL Cancel Available Timing  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
18/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
2. At Standby  
When CS is low and ORG is high or OPEN, even if SK,DI, DO are low, high or with middle electric potential, current  
does not exceed ISB1 Max  
When CS is low, even if SK,DI, DO and ORG are low, high or with middle electric potential, current does not exceed ISB2  
Max  
3. I/O Peripheral Circuit  
(1) Pull Down CS.  
By making CS=low at power ON/OFF, wrong operation and write error are prevented.  
(a) Pull Down Resistance RCS of CS Pin  
To prevent wrong operation and write error at power ON/OFF, CS pull down resistor is necessary. Select an  
appropriate resistor value from microcontroller VOH, IOH, and VIL characteristics of this IC.  
VOHM  
Rcs ≧  
・・・①  
IOHM  
Microcontroller  
VOHM  
EEPROM  
VIHE  
VOHM  
VIHE  
・・・②  
Example) When Vcc =5V, VIHE=2V, VOHM=2.4V, IOHM=2mA,  
from the equation ,  
2.4  
Rcs ≧  
High output  
Low input  
IOHM  
Rcs  
2×10-3  
Rcs 1.2 [kΩ]  
With the value of Rpd to satisfy the above equation, VOHM becomes  
2.4V or higher, and VIHE (=2.0V), the equation is also satisfied.  
Figure 44. CS Pull Down Resistance  
VIHE  
: EEPROM VIH specifications  
VOHM : Microcontroller VOH specifications  
IOHM : Microcontroller IOH specifications  
(2) DO is available in both pull up and pull down.  
DO output always is High-Z except in READY / BUSY STATUS and data output in read command.  
When malfunction occurs at High-Z input of the microcontroller port connected to DO, it is necessary to pull down  
and pull up DO. When there is no influence upon the microcontroller operations, DO may be left OPEN.  
If DO is OPEN during transition of output from BUSY to READY status, and at an instance where CS=high,  
SK=high, DI=high, EEPROM recognizes this as a start bit, resets READY output, and sets DO=High-Z. Therefore,  
READY signal cannot be detected. To avoid such output, pull up DO pin for improvement.  
CS  
SK  
DI  
CS  
SK  
DI  
High  
Enlarged  
D0  
High-Z  
CS=SK=DI=High  
When DO=OPEN  
READY  
High-Z  
DO  
DO  
DO  
BUSY  
BUSY  
BUSY  
Improvement by DO pull up  
CS=SK=DI=High  
When DO=pull up  
READY  
Figure 45. READY Output Timing at DO=OPEN  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
19/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
(a) Pull Up Resistance RPU and Pull Down Resistance RPD of DO pin  
As for pull up and pull down resistance value, select an appropriate resistor value from microcontroller VIH, VIL,  
and VOH, IOH, VOL, IOL characteristics of this IC.  
VccVOLE  
Rpu ≧  
・・・③  
・・・④  
Microcontroller  
VILM  
EEPROM  
IOLE  
VILM  
Rpu  
VOLE  
IOLE  
VOLE  
Example) When Vcc =5V, VOLE=0.4V, IOLE=2.1mA, VILM=0.8V,  
from the equation ,  
Low input  
50.4  
Rpu ≧  
2.1×10-3  
Low output  
Rpu 2.2 [kΩ]  
With the value of Rpu to satisfy the above equation, VOLE becomes  
0.4V or below, and with VILM(=0.8V), the equation is also satisfied.  
Figure 46. DO Pull Up Resistance  
VOLE  
IOLE  
VILM  
: EEPROM VOL specifications  
: EEPROM IOL specifications  
: Microcontroller VIL specifications  
VOHE  
Rpd ≧  
・・・⑤  
・・・⑥  
EEPROM  
IOHE  
VIHM  
Microcontroller  
VOHE  
VIHM  
Example) When Vcc =5V, VOHE=Vcc0.2V, IOHE=0.1mA,  
VIHM=Vcc×0.7V from the equation ,  
VOHE  
IOHE  
High input  
High output  
Rpd  
50.2  
Rpd ≧  
0.1×10-3  
Rpd 48 [kΩ]  
Figure 47. DO Pull Down Resistance  
With the value of Rpd to satisfy the above equation, VOHE becomes 2.4V  
or below, and with VIHM (=3.5V), the equation is also satisfied.  
VOHE  
IOHE  
VIHM  
: EEPROM VOH specifications  
: EEPROM IOH specifications  
: Microcontroller VIH specifications  
(b) READY / BUSY STATUS display (DO terminal)  
This display outputs the internal STATUS signal. When CS is started after tCS  
from CS fall after write command input, high or low is output.  
R/B displaylow (BUSY) = write under execution  
DO STATUS)  
After the timer circuit in the IC works and creates the period of tE/W, this timer circuit completes automatically.  
And the memory cell is written in the period of tE/W, and during this period, other command is not accepted.  
R/B display = high (READY) = command wait STATUS  
DO STATUS)  
After tE/W (Max5ms) the following command is accepted.  
Therefore, CS=high in the period of tE/W, and If signals are input in SK, DI, malfunction may occur,  
therefore, DI=low in the area  
CS=high. (Especially, in the case of shared input port, attention is required.)  
*Do not input any command while STATUS signal is active. Command input in BUSY area is cancelled, but command input in READY area is accepted.  
Therefore, STATUS READY output is cancelled, and malfunction and write error may occur.  
CS  
STATUS  
SK  
CLOCK  
DI  
WRITE  
INSTRUCTION  
DO  
High-Z  
tSV  
READY  
BUSY  
tE/W  
Figure 48. READY/BUSY STATUS Output Timing Chart  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
20/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
4. When to Directly Connect DI and DO  
This IC has independent input terminal DI and output terminal DO, wherein signals are handled separately on timing chart.  
But, by inserting a resistance R between these DI and DO terminals, it is possible to carry out control by a single control  
line.  
Microcontroller  
EEPROM  
DI/O PORT  
R
DI  
DO  
Figure 49. DI, DO Control Line Common Connection  
Data collision of microcontroller DI/O output and DO output and feedback of DO output to DI input of EEPROM.  
Drive from the microcontroller DI/O output to DI input of EEPROM on I/O timing, and output signal from DO output of  
EEPROM occur at the same time in the following points.  
(1) 1 Clock Cycle to take in A0 Address Data at Read Command  
Dummy bit “0” is output to DO terminal.  
When address data A0 = “1” input, through current route occurs.  
EEPROM CS input  
High  
EEPROM SK input  
(1) For the meaning of x ,  
please see tables of Command Mode in Page15.  
A1  
A1  
A0  
A0  
EEPROM DI input  
Collision of DI input and DO output  
(1)  
EEPROM DO output  
Microcontroller DI/O port  
Dx Dx-1 Dx-2  
0
High-Z  
High-Z  
Microcontroller output  
Microcontroller input  
Figure 50. Collision Timing at Read Data Output at DI, DO Direct Connection  
(2) Timing of CS = high after write command. DO terminal in READY / BUSY function output.  
When the next start bit input is recognized, High-Z gets in.  
Especially, at command input after write, when CS input is started with microcontroller DI/O output low,  
READY output high is output from DO terminal, and through current route occurs.  
Feedback input at timing of these (1) and (2) does not cause disorder in basic operations, if resistance R is inserted.  
~  
EEPROM CS input  
Write command  
Write command  
Write command  
Write command  
~  
~  
EEPROM SK input  
EEPROM DI input  
~  
~  
~  
~  
High-Z  
READY  
READY  
READY  
Collision of DI input and DO output  
BUSY  
EEPROM DO output  
Microcontroller DI/O port  
~  
BUSY  
Write command  
~  
~  
Microcontroller output  
Microcontroller input  
Microcontroller output  
Figure 51. Collision Timing at DI, DO Direct Connection  
Note) As for the case (2), attention must be paid to the following.  
When STATUS READY is active, DO and DI are shared, DI=high and the microcontroller DI/O=High-Z or the microcontroller DI/O=high,if SK clock  
is input, DO output is input to DI and is recognized as a start bit, and malfunction may occur. As a method to avoid malfunction, at STATUS READY  
output, set SK=low, or start CS within 4 clocks after high of READY signal is output.  
Start bit  
CS  
SK  
DI  
Because DI=high, set  
SK=low at CS rise.  
READY  
DO  
High-Z  
Figure.52 Start Bit Input Timing at DI, DO Direct Connection  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
21/36  
Daattaasshheeeett  
BR93G66-3  
Selection of Resistance Value R  
The resistance R becomes a short-circuit current limiting resistance during signal conflicts and it does not affect the  
basic operations of the device. When short-circuit current flows, glitches in the power source lines may be produced.  
Determine the maximum transient current in the power lines wherein glitches are not produced. Select the value of  
resistance R that will satisfy the EEPROM input level VIH/VIL, even under the influence of voltage fluctuations resulting  
from short-circuit current and so forth. Assuming the allowable short-circuit current defined as I, the following relation  
should be satisfied.  
(3) Address Data A0 = “1” input, dummy bit “0” Output Timing  
(When microcontroller DI/O output is high, EEPROM DO outputs low, and high is input to DI)  
(a) Make the through current to EEPROM 10mA or below.  
(b) See to it that the level VIH of EEPROM should satisfy the following.  
Conditions  
Microcontroller  
EEPROM  
VIHE IOHM×R + VOLE  
At this moment, if VOLE=0V,  
DI/O PORT  
VOHM  
IOHM  
DI  
VIHE IOHM×R  
High output  
VIHE  
R ≧  
R
・・・⑦  
IOHM  
DO  
VIHE  
: EEPROM VIH specifications  
VOLE  
VOLE : EEPROM VOL specifications  
IOHM : Microcontroller IOH specifications  
Low outpu  
Figure 53. Circuit at DI, DO Direct Connection (Microcontroller DI/O high output, EEPROM low output)  
(4) DO STATUS READY Output Timing  
(When the microcontroller DI/O is low, EEPROM DO output high, and low is input to DI)  
(a) Set the EEPROM input level VIL so as to satisfy the following.  
Conditions  
Microcontroller  
DI/O PORT  
EEPROM  
VILE VOHE – IOLM×R  
As this moment, VOHE=Vcc  
DI  
Low output  
VOLM  
VILE Vcc – IOLM×R  
R
IOLM  
Vcc – VILE  
R ≧  
・・・⑧  
DO  
IOLM  
VOHE  
High output  
VILE  
VOHE  
IOLM  
: EEPROM VIL specifications  
: EEPROM VOH specifications  
: Microcontroller IOL specifications  
Example) When VCC=5V, VOHM=5V, IOHM=0.4mA, VOLM=5V, IOLM=0.4mA,  
From the equation ,  
From the equation,  
VIHE  
Vcc – VILE  
R ≧  
R ≧  
R ≧  
IOHM  
IOLM  
3.5  
0.4×10-3  
5 – 1.5  
2.1×10-3  
R ≧  
R 8.75 [k] ・・・⑨  
R 1.67 [k] ・・・⑩  
Therefore, from the equations and ,  
R 8.75 [k]  
Figure 54. Circuit at DI, DO Direct Connection (Microcontroller DI/O low output, EEPROM high output)  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
22/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
5. I/O Equivalence Circuit  
Output Circuit  
Input Circuit  
RESET int.  
CSint.  
DO  
CS  
OEint.  
Figure 56. Input Circuit (CS)  
Figure 55. Output Circuit (DO)  
Input Circuit  
Input Circuit  
CS int.  
CS int.  
DI  
SK  
Figure 57. Input Circuit (DI)  
Figure 58. Input Circuit (SK)  
6. Power-Up/Down Conditions  
(1) At power ON/OFF, set CS low.  
When CS is high, this IC gets in input accept status (active). At power ON, set CS low to prevent malfunction and  
write error from noise (When CS is in low status, all inputs are cancelled.). At power decline, low power status may  
prevail.  
Therefore, at power OFF, set CS low to prevent malfunction from noise.  
VCC  
VCC  
GND  
VCC  
CS  
GND  
Bad example  
Good example  
Figure 59. Timing at Power ON/OFF  
Bad exampleCS pin is pulled up to VCC  
Good exampleIt is low at power ON/OFF.  
Set 10ms or higher to recharge at power OFF.  
When IC is turned ON while CS is high, EEPROM malfunction write error may occur  
due to noise and the likes.  
It’s also possible to happen even when CS input is High-Z.  
When power is turned on without observing this condition,  
IC internal circuit may not be reset, which please note.  
(2) POR Circuit  
This IC has a POR (Power On Reset) circuit as a write error countermeasure. After POR operation, it gets in write  
disable status. The POR circuit is valid only when power is ON, and does not work when power is OFF. However, if  
CS is high at power ON/OFF, it may become write enable status owing to noises and the likes. For secure  
operations, observe the following conditions.  
(a) Set CS=low  
(b) Turn on power so as to satisfy the recommended conditions of tR, tOFF, Vbot for POR circuit operation.  
Recommended conditions of tR, tOFF, Vbot  
tR  
VCC  
tR  
tOFF  
Vbot  
10ms or below  
100ms or below  
10ms or higher  
10ms or higher  
0.3V or below  
0.2V or below  
tOFF  
Vbot  
0
Figure 60. Rise Waveform Diagram  
(3) LVCC Circuit  
LVCC (Vcc-Lockout) circuit prevents data rewrite operation at low power, and prevents wrong write.  
At LVCC voltage (Typ=1.2V) or below, it prevents data rewrite .  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
23/36  
Daattaasshheeeett  
BR93G66-3  
7. Noise Countermeasures  
(1) VCC Noise (Bypass Capacitor)  
When noise or surge gets in the power source line, malfunction may occur. Therefore, in removing these, it is  
recommended to connect a bypass capacitor (0.1μF) between IC VCC and GND, At that moment, connect the  
capacitor as close to IC as possible. And, it is also recommended to connect a bypass capacitor between board  
VCC and GND.  
(2) SK Noise  
When the rise time of SK is long, and a certain degree or more of noise exists, malfunction may occur owing to  
clock bit displacement. To avoid this, a Schmitt trigger circuit is built in SK input. The hysteresis width of this circuit  
is set about 0.2V, if noises exist at SK input, set the noise amplitude 0.2Vp-p or below. And it is recommended to set  
the rise time of SK 100ns or below. In the case when the rise time is 100ns or higher, take sufficient noise  
countermeasures. Make the clock rise, fall time as small as possible.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
24/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Operational Notes  
1. Described numeric values and data are design representative values only, and the values are not guaranteed.  
2. We believe that application circuit examples are recommendable. However, in actual use, confirm characteristics further  
sufficiently. In the case of use by changing the fixed number of external parts, make your decision with sufficient margin  
in consideration of static characteristics and transition characteristics and fluctuations of external parts and our IC.  
3. Absolute maximum ratings  
If the absolute maximum ratings such as supply voltage and operating temperature and so forth are exceeded, LSI may  
be destroyed. Do not supply voltage and temperature exceeding the absolute maximum ratings. In the case of fear  
exceeding the absolute maximum ratings, take physical safety countermeasures such as fuses, and see to it that  
conditions exceeding the absolute maximum ratings should not be supplied to LSI.  
4. GND electric potential  
Set the voltage of GND terminal lowest at any operating condition. Make sure that each terminal voltage is not lower  
than that of GND terminal at any time, even during transient condition.  
5. Thermal design  
Use a thermal design that allows for a sufficient margin by taking into account the permissible power dissipation (Pd) in  
actual operating conditions.  
6. Short between pins and mounting errors  
Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong  
orientation or if pins are shorted together. Short circuit may be caused by conductive particles caught between the  
pins.  
7. Operating the IC in the presence of strong electromagnetic field may cause malfunction, therefore, evaluate design  
sufficiently.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
25/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Part Numbering  
B
R
9
3
G
6
6
x
x
x
3
x
x
x
x
x
BUS type  
93MicroWire  
Operating temperature  
/ Operating Voltage  
-40to +85/ 1.7V to 5.5V  
Capacity  
66=4K  
Package  
Blank :DIP-T8  
F
:SOP8  
FJ  
:SOP-J8  
FV  
:SSOP-B8  
:TSSOP-B8  
:TSSOP-B8J  
:MSOP8  
FVT  
FVJ  
FVM  
NUX  
:VSON008X2030  
Process code  
Pin assignment  
Blank: Pin1~8: CS, SK, DI, DO, GND, ORG, DU, VCC respectively  
A
B
: Pin1~8: CS, SK, DI, DO, GND, NC, DU, VCC respectively  
: Pin1~8: DU, VCC, CS, SK, DI, DO, GND, NC respectively  
G
:
Halogen free  
Blank: Not Halogen free  
As an exception, VSON008X2030  
package will be Halogen free with “Blank”  
T
:
100% Sn  
Blank: 100% Sn  
Packaging and forming specification  
E2  
: Embossed tape and reel  
(SOP8,SOP-J8, SSOP-B8,TSSOP-B8, TSSOP-B8J)  
: Embossed tape and reel  
TR  
(MSOP8, VSON008X2030)  
Blank : Tube  
(DIP-T8)  
Package  
Orderable Part Number  
Remark  
Type  
Quantity  
BR93G66  
-3  
DIP-T8  
SOP8  
Tube of 2000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 4000  
Not Halogen free  
Halogen free  
Halogen free  
Halogen free  
Halogen free  
Halogen free  
Halogen free  
Halogen free  
100% Sn  
BR93G66F  
-3GTE2  
-3GTE2  
-3GTE2  
-3GE2  
-3GTE2  
-3GTTR  
-3TTR  
100% Sn  
100% Sn  
100% Sn  
100% Sn  
100% Sn  
100% Sn  
100% Sn  
BR93G66FJ  
BR93G66FV  
BR93G66FVT  
BR93G66FVJ  
BR93G66FVM  
BR93G66NUX  
SOP-J8  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
VSON008X2030  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
26/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Physical Dimensions Tape and Reel Information  
DIP-T8  
9.3± 0.3  
8
1
5
4
7.62  
0.3± 0.1  
0°−15°  
2.54  
0.5± 0.1  
(Unit : mm)  
<Tape and Reel information>  
Container  
Quantity  
Tube  
2000pcs  
Direction of feed Direction of products is fixed in a container tube  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
27/36  
Daattaasshheeeett  
BR93G66-3  
SOP8  
5.0± 0.2  
(MAX 5.35 include BURR)  
+
6
°
4°  
4
°
8
7
6
5
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
0.1  
S
1.27  
0.42± 0.1  
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
28/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
SOP-J8  
4.9± 0.2  
(MAX 5.25 include BURR)  
+
6°  
4°  
4°  
8
7
6
5
1
2
3
4
0.545  
0.2± 0.1  
S
1.27  
0.42± 0.1  
0.1  
S
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
29/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
SSOP-B8  
3.0± 0.2  
(MAX 3.35 include BURR)  
8
7
6
5
1
2
3
4
0.15± 0.1  
S
0.1  
S
+0.06  
(0.52)  
0.65  
0.22  
0.04  
M
0.08  
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
30/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
TSSOP-B8  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
8
7
6
5
1
2
3
4
1PIN MARK  
+0.05  
0.145  
0.03  
0.525  
S
0.08 S  
+0.05  
0.245  
M
0.04  
0.08  
0.65  
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
31/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
TSSOP-B8J  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
8
7
6
5
1
2
3
4
1PIN MARK  
+0.05  
0.525  
0.145  
0.03  
S
0.08 S  
+0.05  
0.32  
0.04  
M
0.08  
0.65  
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
32/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
MSOP8  
2.9± 0.1  
(MAX 3.25 include BURR)  
+
6°  
4°  
4°  
8 7 6 5  
1
2 3 4  
1PIN MARK  
+0.05  
+0.05  
0.03  
0.145  
0.475  
S
0.22  
0.04  
0.08 S  
0.65  
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
33/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
VSON008X2030  
2.0± 0.1  
1PIN MARK  
S
0.08 S  
1.5± 0.1  
0.5  
C0.25  
1
8
4
5
0.25  
+0.05  
0.04  
0.25  
(Unit : mm)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
4000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
34/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Marking Diagrams  
SOP8(TOP VIEW)  
DIP-T8 (TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
9 G 6 6  
BR93G66  
1PIN MARK  
SOP-J8(TOP VIEW)  
SSOP-B8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
9 G C  
9 G 6 6  
1PIN MARK  
1PIN MARK  
TSSOP-B8(TOP VIEW)  
TSSOP-B8J(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
9 G 6  
6 G 3  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
VSON008X2030 (TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
9 G C  
9 G 3  
9 G 6  
6 G 3  
1PIN MARK  
1PIN MARK  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
35/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Daattaasshheeeett  
BR93G66-3  
Revision History  
Date  
Revision  
001  
Changes  
27.Aug.2012  
New Release  
Update some English words, sentences’ descriptions, grammar and formatting.  
Delete “Status of this document” in page 25.  
Delete “Lineup” after “Part numbering “ in page26.  
Add Halogen free and 100% Sn information to page 26.  
Add Part Number list to page 26.  
27.Feb.2013  
15.Jun.2016  
002  
003  
www.rohm.com  
TSZ02201-09190G100040-1-2  
15.Jun.2016 REV.003  
36/36  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BR93G66-3 - Web Page  
Distribution Inventory  
Part Number  
Package  
BR93G66-3  
DIP-T8  
Unit Quantity  
2000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
50  
Tube  
inquiry  
Yes  
配单直通车
BR93H46F-WE2产品参数
型号:BR93H46F-WE2
是否无铅: 不含铅
是否Rohs认证: 符合
生命周期:Active
零件包装代码:SOIC
包装说明:LEAD FREE, SOP-8
针数:8
Reach Compliance Code:compliant
ECCN代码:EAR99
HTS代码:8542.32.00.51
风险等级:5.56
Is Samacsys:N
最大时钟频率 (fCLK):2 MHz
JESD-30 代码:R-PDSO-G8
JESD-609代码:e3/e2
长度:5 mm
内存密度:1024 bit
内存集成电路类型:EEPROM
内存宽度:16
功能数量:1
端子数量:8
字数:64 words
字数代码:64
工作模式:SYNCHRONOUS
最高工作温度:125 °C
最低工作温度:-40 °C
组织:64X16
封装主体材料:PLASTIC/EPOXY
封装代码:LSOP
封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, LOW PROFILE
并行/串行:SERIAL
峰值回流温度(摄氏度):260
认证状态:Not Qualified
座面最大高度:1.6 mm
串行总线类型:MICROWIRE
最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):2.5 V
标称供电电压 (Vsup):4 V
表面贴装:YES
技术:CMOS
温度等级:AUTOMOTIVE
端子面层:TIN/TIN COPPER
端子形式:GULL WING
端子节距:1.27 mm
端子位置:DUAL
处于峰值回流温度下的最长时间:10
宽度:4.4 mm
最长写入周期时间 (tWC):5 ms
Base Number Matches:1
  •  
  • 供货商
  • 型号 *
  • 数量*
  • 厂商
  • 封装
  • 批号
  • 交易说明
  • 询价
批量询价选中的记录已选中0条,每次最多15条。
 复制成功!