Zusammenfassung
Der Beitrag verortet die zunehmende Relevanz digitaler Modelle in organisationalen und politischen Prozessen als Rekonfiguration gesellschaftlicher Selbstbeobachtung. Vor dem Hintergrund eines praxistheoretischen Zugangs, der Modellierung als durch materiale Infrastrukturen und vernetzte Wissensformen strukturierte Praxis der Produktion von Gesellschaftswissen versteht, wird argumentiert, dass diese Rekonfiguration das Zusammenwirken von epistemischer und politischer Repräsentation durch Formen hybrider Repräsentation prägt, in denen das Volk als komplexes Datenobjekt zur Sprache gebracht werden soll. Anhand der Beispiele von Computational Social Science und Algorithmic Decision-Making wird angedeutet, wie Modellierungspraktiken als Teil der Ökonomie politischer Repräsentation wirken können. Mit der Organisation von Inferenzen wird eine Dimension der Performativität dieser hybriden Repräsentationspraktiken in den Blick genommen.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Literatur
AlgorithmWatch. (2020). “Automating Society” Hrsg. von F. Chiusi, S. Fischer, N. Kayser-Bril & M. Spielkamp.
Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. In ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
Barnes, T. J., & Wilson, M. W. (2014). Big data, social physics, and spatial analysis: The early years. Big Data & Society, 1(1).
Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104, 671–732.
Bourdieu, P. (1993). Sozialer Sinn. Kritik der theoretischen Vernunft. Suhrkamp.
Bourdieu, P. (1995). Sozialer Raum und “Klassen“. Zwei Vorlesungen. Suhrkamp.
Bourdieu, P. (2010). Politik. Schriften zur Politischen Ökonomie 2. Suhrkamp.
Bruns, A. (2019). After the ‘APIcalypse’: Social media platforms and their fight against critical scholarly research. Information, Communication & Society, 22(11), 1544–1566.
Bunge, M. (1993). Realism and antirealism in social science. Theory and decision, 35(3), 207–235.
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of Machine Learning Research, 81, 1–15.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 1–12.
Callon, M. (1984). Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St. Brieuc Bay. The Sociological Review, 32(1_suppl), 196–233.
Camic, C., Gross, N., & Lamont, M. (Hrsg.). (2011). Social knowledge in the making. University of Chicago Press.
Coopmans, C. (Hrsg.). (2014). Representation in scientific practice revisited. MIT Press.
Coopmans, C., Vertesi, J., Lynch, M. E., & Woolgar, S. (Hrsg.). (2014). Representation in scientific practice revisited. MIT Press.
Desrosières, A. (1991). How to make things which hold together: Social science, statistics and the state. In P. Wagner, B. Wittrock, & R. Whitley (Hrsg.), Discourses on society (S. 195–218). Springer Netherlands.
Diehl, P. (2016). Repräsentation im Spannungsfeld von Symbolizität, Performativität und politischem Imaginären. In P. Diehl & F. Steilen (Hrsg.), Politische Repräsentation und das Symbolische (S. 7–22). Springer.
Diehl, P. (2019). Das politische Imaginäre und die politische Repräsentation. Österreichische Zeitschrift für Soziologie, 44, 37–55.
Diehl, P., Sintomer, Y., & Hayat, S. (2014). Einleitung. Trivium, 16.
Diehl, P., & Steilen, F. (Hrsg.). (2016). Politische Repräsentation und das Symbolische. Historische, politische und soziologische Perspektiven. Springer VS.
Disch, L. (2008). The people as ‘presupposition’ of representative democracy – An essay on the political theory of Pierre Rosanvallon. Redescriptions: Political Thought, Conceptual History and Feminist Theory, 12(1), 47.
Disch, L. (2010). ‘Faitiche’-izing the people: What representative democracy might learn from science studies. In B. Braun & S. Whatmore (Hrsg.), Political matter. Technoscience, democracy, and public life. University of Minnesota Press.
Disch, L. (2011). Toward a mobilization conception of democratic representation. American Political Science Review, 105(1), 100–114.
Egmond, V. S., & Zeiss, R. (2010). Modeling for policy: Science-based models as performative boundary objects for dutch policy making. Science Studies, 23(1), 58–78.
Edwards, P. N. (2013). A vast machine. Computer models, climate data, and the politics of global warming. MIT Press.
Ensign, D., Friedler, S. A., Neville, S., Scheidegger, C., & Venkatasubramanian, S. (2018). Runaway feedback loops in predictive policing. Proceedings of Machine Learning Research, 81, 1–12.
Espeland, W. N., & Sauder, M. (2007). Rankings and reactivity: How public measures recreate social worlds. American Journal of Sociology, 113(1), 1–40.
Eyert, F. (2023). Mathematical science communication as a strategy for democratizing algorithmic governance. In A. M. Hartkopf & E. Henning (Hrsg.), Handbook of Mathematical Science Communication (S. 295–321). World Scientific.
Eyert, F., & Lopez P. (2023). Rethinking Transparency as a Communicative Constellation. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 444–454.
Eyert, F., Irgmaier, F., & Ulbricht, L. (2020). Extending the framework of algorithmic regulation. The Uber case. Regulation & Governance, 16(1), 23–44.
Garcia, D., Pellert, M., Lasser, J., & Metzler, H. (2021). Social media emotion macroscopes reflect emotional experiences in society at large. https://arxiv.org/abs/2107.13236.
Gramelsberger, G., & Mansnerus, E. (2012). The inner world of models and its epistemic diversity: Infectious disease and climate modelling. In C. Bissell & C. Dillon (Hrsg.), Ways of thinking, ways of seeing. Mathematical and other modelling in engineering and technology (S. 167–195). Springer.
Green, B. (2018). Data science as political action: Grounding data science in a politics of justice. https://arxiv.org/abs/1811.03435.
Hacking, I. (1983). Representing and intervening. Introductory topics in the philosophy of natural science. Cambridge University Press.
Hacking, I. (2000). The social construction of what? Harvard University Press.
Han, B.-C. (2013). Digitale Rationalität und das Ende des kommunikativen Handelns. Matthes & Seitz.
Hayat, S. (2019). Representation as proposition: Democratic representation after the constructivist turn. In L. Disch, M. v. de Sande, & N. Urbinati (Hrsg.), The constructivist turn in political representation (S. 121–140). Edinburgh University Press.
Healy, K. (2015). The performativity of networks. European Journal of Sociology, 56(2), 175–205.
Heintz, B. (2021). Big Observation – Ein Vergleich moderner Beobachtungsformate am Beispiel von amtlicher Statistik und Recommendersystemen. Kölner Zeitschrift für Soziologie und Sozialpsychologie, 73, 137–167.
Hofmann, J. (2018). Big data im Wahlkampf: Wählerinnen- und Wählermodellierung, micro-targeting und Repräsentationsansrpüche. In Kolany-Reiser (Hrsg.), Dimensionen von Big Data. Eine multidisziplinäre Annäherung (S. 163–168). Springer.
Hooker, S. (2021). Moving beyond ‘algorithmic bias is a data problem’. Patterns, 2(4), 1–4.
Humphreys, P. (2004). Extending ourselves. Computational science, empiricism, and scientific method. Oxford University Press.
Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–626.
Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Harvard University Press.
Kannangara, S., & Wobcke, W. (2022). Determining political interests of issue-motivated groups on social media: Joint topic models for issues, sentiment and stance. Journal of Computational Social Science, 5(1), 811–40.
Katzenbach, C., & Ulbricht, L. (2019). Algorithmic governance. Internet Policy Review, 8(4).
Kaufmann, M., Egbert, S., & Leese, M. (2018). Predictive policing and the politics of patterns. The British Journal of Criminology, 59(3), 674–692.
Knuuttila, T. (2011). Modelling and representing: An artefactual approach to model-based representation. Studies in History and Philosophy of Science Part A, 42(2), 262–271.
Kupilik, M., & Witmer, F. (2018). Spatio-temporal violent event prediction using Gaussian process regression. Journal of Computational Social Science, 1(2), 437–451.
Latour, B. (1990). Drawing things together. In M. Lynch & S. Woolgar (Hrsg.), Representation in scientific practice (S. 19–68). MIT Press.
Latour, B. (2003). What if we talked politics a little? Contemporary Political Theory, 2003(2), 143–164.
Latour, B. (2004). Politics of nature. How to bring the sciences into democracy. Harvard University Press.
Laurent, B. (2013). Du laboratoire scientifique à l’ordre constitutionnel: Analyser la représentation à la suite des études sociales des sciences. Raisons politiques, 50(2), 137–155.
Law, J., & Urry, J. (2004). Enacting the social. Economy and Society, 33(3), 390–410.
Lazer, D. M. J., Pentland, A., Watts, D. J., Aral, S., Athey, S., Contractor, N., Freelon, D., et al. (2020). Computational social science: Obstacles and opportunities. Science, 369(6507), 1060–1062.
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., et al. (2009). Computational social science. Science, 323(5915), 721–723.
Longo, J., Kuras, E., Smith, H., Hondula, D. M., & Johnston, E. (2017). Technology use, exposure to natural hazards, and being digitally invisible: Implications for policy analytics. Policy & Internet, 9(1), 76–108.
Lopez, P. (2019). Reinforcing intersectional inequality via the AMS algorithm in Austria. In Proceedings of the STS Graz Conference 2019. Critical issues in science, technology, and society studies (S. 289–309).
Luhmann, N. (1998). Die Gesellschaft der Gesellschaft. Suhrkamp.
Lynch, M., & Woolgar, S. (Hrsg.). (1990). Representation in scientific practice. MIT Press.
MacKenzie, D. A., Muniesa, F., & Siu, L. (Hrsg.). (2008). Do economists make markets? On the performativity of economics. Princeton University Press.
Malik, M. M., Mayer, K., Lamba, H., & Müller-Birn, C. (2019). Workshop on critical data science. At the 13th international AAAI conference on web and social media (ICWSM-19) June 11, 2019. https://projects.iq.harvard.edu/files/critical-data-science/files/wcds2019_proposal.pdf.
Mau, S. (2020). Numbers matter! The society of indicators, scores and ratings. International Studies in Sociology of Education, 29(1–2), 19–37.
Mohler, G. O. (2011). Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493), 100–108.
Mol, A. (1999). Ontological politics. A word and some questions. The Sociological Review, 47(S1), 74–89.
Müller, H.-P. (2016). Politisches Feld und politische Repräsentation. In P. Diehl & F. Steilen (Hrsg.), Politische Repräsentation und das Symbolische. Historische, politische und soziologische Perspektiven (S. 85–106). Springer.
Nassehi, A. (2019). Muster. Theorie der digitalen Gesellschaft. Beck.
Osborne, T., & Rose, N. (1999). Do the social sciences create phenomena? The example of public opinion research. The British Journal of Sociology, 50(3), 367–396.
Pentland, A. (2015). Social physics. How social networks can make us smarter. Penguin.
Pitkin, H. F. (1972). The concept of representation. University of California Press.
Prietl, B. (2021). Warum Ethikstandards nicht alles sind. Zu den herrschaftskonservierenden Effekten aktueller Digitalisierungskritik. Behemoth, 14(2).
Reckwitz, A. (2002). Toward a theory of social practices: A development in culturalist theorizing. European Journal of Social Theory, 5(2), 243–63.
Reckwitz, A. (2019). Das Ende der Illusionen. Politik, Ökonomie und Kultur in der Spätmoderne. Suhrkamp.
Rosanvallon, P. (1998). Le Peuple Introuvable. Histoire de La Représentation Démocratique En France. Gallimard.
Ruelens, A. (2022). Analyzing user-generated content using Natural Language Processing: A case study of public satisfaction with healthcare systems. Journal of Computational Social Science, 5(1), 731–49.
Sánchez-Monedero, J., & Dencik, L. (2020). The politics of deceptive borders: ‘Biomarkers of deceit’ and the case of iBorderCtrl. Information, Communication & Society, 25(3), 413–430.
Savage, M., & Burrows, R. (2007). The coming crisis of empirical sociology. Sociology, 41(5), 885–899.
Saward, M. (2005). Governance and the transformation of political representation. In Janet Newman (Hrsg.), Remaking governance. Peoples, politics and the public sphere (S. 179–196). Policy Press.
Saward, M. (2006). The representative claim. Contemporary Political Theory, 5(3), 297–318.
Schäfer, H. (Hrsg.) (2016). Praxistheorie. Ein soziologisches Forschungsprogramm. Transcript.
Schatzki, T. R., Knorr-Cetina, K., & von Savigny, E. (Hrsg.). (2001). The practice turn in contemporary theory. Routledge.
Schauer, F., & Zeckhauser, R. (2007). Regulation by generalization. Regulation & Governance, 1(1), 68–87.
Scott, J. C. (1998). Seeing like a state. How certain schemes to improve the human condition have failed. Yale University Press.
Simon, M. (2019). Path dependency and adaptation: The effects of policy on migration systems. Journal of Artificial Societies and Social Simulation, 22(2).
Smee, B. (13. September 2021). Queensland police to trial AI tool designed to predict and prevent domestic violence incidents. The Guardian. https://www.theguardian.com/australia-news/2021/sep/14/queensland-police-to-trial-ai-tool-designed-to-predict-and-prevent-domestic-violence-incidents.
Ulbricht, L. (2020). Scraping the demos. Digitalization, web scraping and the democratic project. Democratization, 27(3), 426–442.
Urbinati, N., & Warren, M. E. (2008). The concept of representation in contemporary democratic theory. Annual Review of Political Science, 11(1), 387–412.
Voß, J.-P. (2018). Big Data als epistemische Innovation? Kulturell-kognitiv hergestellte Erwartungen durch Big Data. In Kolany-Reiser (Hrsg.), Dimensionen von Big Data. Eine multidisziplinäre Annäherung (S. 155–163). Springer.
Wachter, S., & Mittelstadt, B. (2019). A right to reasonable inferences: Re-thinking data protection law in the age of Big Data and AI. Columbia Business Law Review, 2019(2).
Wagner, P., Weiss, C. H., Wittrock, B., & Wollman, H. (1991). Social sciences and modern states. National experiences and theoretical crossroads. Cambridge University Press.
Wagner, C., Strohmaier, M., Olteanu, A., Kıcıman, E., Contractor, N., & Eliassi-Rad, T. (2021). Measuring algorithmically infused societies. Nature, 595(7866), 197–204.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this chapter
Cite this chapter
Eyert, F. (2024). Modelle des Demos. Hybride Repräsentation und die Politik der Inferenzen. In: Voß, JP., Schölzel, H. (eds) Die Fabrikation von Demokratie. Politologische Aufklärung – konstruktivistische Perspektiven. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-42936-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-658-42936-2_5
Published:
Publisher Name: Springer VS, Wiesbaden
Print ISBN: 978-3-658-42935-5
Online ISBN: 978-3-658-42936-2
eBook Packages: Social Science and Law (German Language)